Skip to main content
Log in

Magnetic properties of arrays of cobalt nanoparticles on the CaF2(110)/Si(001) surface

  • Magnetism and Ferroelectricity
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The Co/CaF2/Si(001) heterostructures with the corrugated (110) surface of the CaF2 buffer layer have been grown by molecular beam epitaxy. The structures are nanoparticle arrays of single-crystal Co, mostly of the cubic fcc modification. The behavior of the magnetic hysteresis loops as a function of the density of coverage of the substrate by cobalt islands, the island size, and the temperature is studied using the magnetooptical technique. At low coverage densities, where the effective cobalt film thickness d eff is less than the critical value d ceff , the magnetic structure of the films at T = 294 K can be visualized as an ensemble of superparamagnetic, weakly interacting nanoparticles and is characterized by small values of the coercive field H c and the remanent magnetization M rem. A decrease in the temperature leads to a strong increase in H c and M rem, which is associated with the transition of the islands to the blocked state. The blocking temperature of the structures is T b ∼ 280 K. The magnetic anisotropy parameter K and the saturation magnetization M s of the islands depend on the growth temperature of cobalt T Co. An increase in the coverage density above the critical thickness d ciff at T = 294 K brings about a strong increase in H c and M rem and the appearance of a hysteresis loop anisotropy originating from the corrugated structure of the CaF2 buffer layer. The experimental results are compared with the model of an ensemble of noninteracting superparamagnetic particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. I. Martin, J. Nogues, Kai Liu, J. L. Vicent, and I. K. Schuller, J. Magn. Magn. Mater. 256, 449 (2003).

    Article  ADS  Google Scholar 

  2. S. P. Gubin, S. P. Koshkarev, G. B. Khomutov, and G. Yu. Yurkov, Usp. Khim. 74, 1 (2005).

    Google Scholar 

  3. S. P. Gubin and S. P. Koshkarev, Neorg. Mater. 38(11), 1287 (2002) [Inorg. Mater. 38 (11), 1085 (2002)].

    Article  Google Scholar 

  4. N. Yakovlev, A. Kaveev, N. S. Sokolov, B. B. Krichevtsov, and A. Huan, Curr. Appl. Phys. 6, 575 (2006).

    Article  ADS  Google Scholar 

  5. B. B. Krichevtsov, A. L. Kaveev, A. Balanev, N. S. Sokolov, J. Camarero, and R. Miranda, Fiz. Tverd. Tela (St. Petersburg) 49(8), 1410 (2007) [Phys. Solid State 49 (8), 1481 (2007)].

    Google Scholar 

  6. L. Pasquali, B. P. Doyle, F. Borgatti, A. Giglia, N. Mahne, M. Pedrio, S. Nannarone, A. K. Kaveev, A. Balanev, B. B. Krichevtsov, S. M. Suturin, and N. S. Sokolov, Surf. Sci. 600, 4170 (2006).

    Article  ADS  Google Scholar 

  7. E. S. Stoner and E. P. Wohlfarth, Philos. Trans. R. Soc. London, Ser. A 240, 599 (1948).

    Article  MATH  ADS  Google Scholar 

  8. J. Camarero, J. J. de Miguel, R. Miranda, and A. Hernando, J. Phys.: Condens. Matter 12, 7713 (2000).

    Article  ADS  Google Scholar 

  9. A. K. Zvezdin and V. A. Kotov, Modern Magneto-Optics and Magneto-Optical Materials (Institute of Physics, Bristol, Philadelphia, United States, 1997), p. 386.

    Google Scholar 

  10. L. Maya, J. R. Thompson, K. J. Song, and R. J. Warmack, J. Chem. Phys. 83, 905 (1988).

    Google Scholar 

  11. E. Dudzik, H. A. Durrik, S. S. Dhesi, G. van der Laan, D. Knabben, and J. B. Goedkoop, J. Phys.: Condens. Matter 11, 8445 (1999).

    Article  ADS  Google Scholar 

  12. M. E. McHenry, S. A. Majetich, J. O. Artman, M. DeGraef, and S. W. Stakey, Phys. Rev. B: Condens. Matter 49, 11358 (1994).

    ADS  Google Scholar 

  13. S. P. Gubin, Yu. I. Spichkin, Yu. A. Koksharov, G. Yu. Yurkov, A. V. Kozinkin, T. A. Nedoseikina, V. G. Vlasenko, M. S. Korobov, and A. M. Tishin, J. Magn. Magn. Mater. 265, 234 (2003).

    Article  ADS  Google Scholar 

  14. J. Garsia-Ortego and A. J. Garsia-Bastida, J. Rivas. J. Magn. Magn. Mater. 189, 377 (1998).

    ADS  Google Scholar 

  15. L. Néel, Ann. Geophys. (CNRS) 5, 99 (1949).

    Google Scholar 

  16. J. M. Bonard, S. Seraphin, J. E. Wegrowe, J. Jiao, and A. Châtelain, Chem. Phys. Lett. 343, 251 (2001).

    Article  ADS  Google Scholar 

  17. F. Bodker, S. Morup, and S. Linderoth, Phys. Rev. Lett. 72, 282 (1994).

    Article  ADS  Google Scholar 

  18. O. Kitakami, H. Sato, Y. Shimada, F. Sato, and M. Tanaka, Phys. Rev. B: Condens. Matter 56, 13849 (1997).

    ADS  Google Scholar 

  19. I. M. L. Billas, A. Chatelain, and W. A. de Heer, J. Magn. Magn. Mater. 168, 64 (1997).

    Article  ADS  Google Scholar 

  20. I. M. L. Billas, A. Chatelain, and W. A. de Heer, Surf. Rev. Lett. 3, 429 (1996).

    Article  Google Scholar 

  21. P. Allia, M. Coisson, M. Knobel, P. Tiberto, and F. Vinai, Phys. Rev. B: Condens. Matter 60, 12207 (1999).

    Google Scholar 

  22. P. Allia, M. Coisson, P. Tiberto, F. Vinai, M. Knobel, M. A. Novak, and W. C. Nunes, Phys. Rev. B: Condens. Matter 64, 144420 (2001).

    ADS  Google Scholar 

  23. J. L. Dormann, D. Fiorani, and E. Tronc, Adv. Chem. Phys. 98, 283 (1997).

    Article  Google Scholar 

  24. M. F. Hansen and S. Mürup, J. Magn. Magn. Mater. 184, 262 (1998).

    Article  ADS  Google Scholar 

  25. J. Dai, J.-Q. Wang, C. Sangregorio, J. Fang, E. Carpenter, and J. Tang, J. Appl. Phys. 87, 7397 (2000).

    Article  ADS  Google Scholar 

  26. D. Kechrakos and K. N. Trohidou, Phys. Rev. B: Condens. Matter 58, 12169 (1998).

    ADS  Google Scholar 

  27. S. Morup, M. B. Madsen, and J. Franck, J. Magn. Magn. Mater. 40, 163 (1983).

    Article  ADS  Google Scholar 

  28. D. S. Il’yushchenkov, V. I. Kozub, and I. N. Yassievich, Fiz. Tverd. Tela (St. Petersburg) 49(10), 1853 (2007) [Phys. Solid State 49 (10), 1944 (2007)].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. B. Krichevtsov.

Additional information

Original Russian Text © B.B. Krichevtsov, S.V. Gastev, D.S. Il’yushchenkov, A.K. Kaveev, N.S. Sokolov, 2009, published in Fizika Tverdogo Tela, 2009, Vol. 51, No. 1, pp. 109–117.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krichevtsov, B.B., Gastev, S.V., Il’yushchenkov, D.S. et al. Magnetic properties of arrays of cobalt nanoparticles on the CaF2(110)/Si(001) surface. Phys. Solid State 51, 118–126 (2009). https://doi.org/10.1134/S1063783409010156

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783409010156

PACS numbers

Navigation