Skip to main content
Log in

Effect of copper doping on charge ordering in La1/3Ca2/3Mn1 − y Cu y O3 (0 ≤ y ≤ 0.07)

  • Magnetism and Ferroelectricity
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The effect of copper doping on charge-orbital ordering in La1/3Ca2/3Mn1 − y Cu y O3 (0 ≤ y ≤ 0.07) is studied by measuring the temperature dependences of the magnetization, the electrical resistivity, and the heat capacity in combination with an electron microscopic investigation of the structure. It is demonstrated that copper doping leads to a lowering of the charge ordering temperature T CO and that this decrease is proportional to the decrease in the Mn3+ ion concentration. In the temperature range 5–300 K, the semiconducting pattern of the electrical resistivity persists for all values of 0 ≤ y ≤ 0.07. Electron microscope studies have shown that the presence of copper suppresses the formation of a regular superstructure, which is characteristic of the undoped starting compound, beginning already from low concentrations (y = 0.01). Differential scanning calorimetry revealed a substantial decrease in the transition entropy at the onset of charge ordering in copper-doped samples as compared to the starting compound. Doping with copper destroys long-range charge-orbital ordering and retains apparently only short-range order.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Colossal Magnetoresistance Oxides, Ed. by Y. Tokura (Gordon and Breach, New York, 2000).

    Google Scholar 

  2. J. Cocy, M. Viret, and S. Molnar, Adv. Phys. 48, 167 (1999).

    Article  ADS  Google Scholar 

  3. M. B. Salamon and M. Jaime, Rev. Mod. Phys. 73, 583 (2001).

    Article  ADS  Google Scholar 

  4. Yu. A. Izyumov and Yu. N. Skryabin, Usp. Fiz. Nauk 171(2), 121 (2001) [Phys.—Usp. 44 (2), 109 (2001)].

    Article  Google Scholar 

  5. V. M. Loktev and Yu. G. Pogorelov, Fiz. Nizk. Temp. (Kharkov) 26(3), 231 (2000) [Low Temp. Phys. 26 (3), 171 (2000)].

    Google Scholar 

  6. E. Dagotto, H. Hotta, and A. Moreo, Phys. Rep. 344, 1 (2001).

    Article  ADS  Google Scholar 

  7. E. L. Nagaev, Colossal Magnetoresistance and Phase Separation in Magnetic Semiconductors (Imperial College Press, London, 2002).

    Google Scholar 

  8. C. Zener, Phys. Rev. 82, 403 (1951).

    Article  ADS  Google Scholar 

  9. J. P. Goodenough, Phys. Rev. 100, 564 (1955).

    Article  ADS  Google Scholar 

  10. G. C. Milward, M. J. Calderon, and P. B. Littlewood, Nature (London) 433, 607 (2005).

    Article  ADS  Google Scholar 

  11. M. Coey, Nature (London) 430, 154 (2004).

    Article  ADS  Google Scholar 

  12. C. H. Chen and S.-W. Cheong, Phys. Rev. Lett. 76, 4042 (1996).

    Article  ADS  Google Scholar 

  13. C. H. Chen, S.-W. Cheong, and H. Y. Hwang, J. Appl. Phys. 81, 1326 (1997).

    Google Scholar 

  14. J. Herrero-Martin, J. Garcia, G. Subias, J. Blasco, and M. Concepcion Sánchez, Phys. Rev. B: Condens. Matter 70, 024408-1 (2004).

  15. J. Garcia, M. Concepcion Sánchez, J. Blasco, G. Subias, and M. Grazia Proietti, J. Phys.: Condens. Matter 13, 3243 (2001).

    Article  ADS  Google Scholar 

  16. G. van Tendeloo, O. I. Lebedev, M. Herview, and B. Raveau, Rep. Prog. Phys. 67, 1315 (2004).

    Article  ADS  Google Scholar 

  17. Y. Jo, J.-G. Park, C. S. Hong, N. H. Hur, and H. C. Ri, Phys. Rev. B: Condens. Matter 63, 172413 (2001).

    Google Scholar 

  18. T. S. Orlova, J. Y. Laval, P. Monod, J. G. Noudem, V. S. Zahvalinskii, V. S. Vikhnin, and Yu. P. Stepanov, J. Phys.: Condens. Matter 18, 6729 (2006).

    Article  ADS  Google Scholar 

  19. R. Laiho, K. G. Lisunov, E. Lähderanta, P. A. Petrenko, J. Salminen, V. N. Stamov, and V. S. Zakhvalinskii, J. Phys.: Condens. Matter 12, 5751 (2000).

    Article  ADS  Google Scholar 

  20. R. Laiho, K. G. Lisunov, E. Lähderanta, P. A. Petrenko, V. N. Stamov, and V. S. Zakhvalinskii, J. Magn. Magn. Mater. 213, 271 (2000).

    Article  ADS  Google Scholar 

  21. M. C. Wu, J. Chen, and X. Jin, Physica C (Amsterdam) 276, 132 (1997).

    ADS  Google Scholar 

  22. P. G. Radeaelli, D. E. Cox, L. Capogna, S.-W. Cheong, and M. Marezio, Phys. Rev. B: Condens. Matter 59, 14440 (1999).

    Google Scholar 

  23. T. Sudyoadsuk, R. Suryanarayanan, P. Winotai, and L. E. Wenger, J. Magn. Magn. Mater. 278, 96 (2004).

    Article  ADS  Google Scholar 

  24. M. R. Ibarra, J. M. de Teresa, J. Blasco, P. A. Algarabel, C. Marquina, J. Garcia, J. Stankiewicz, and C. Ritter, Phys. Rev. B: Condens. Matter 56, 8252 (1997).

    ADS  Google Scholar 

  25. S. B. Ogale, R. Shreekala, R. Bathe, S. K. Date, S. I. Patil, B. Hannoyer, F. Petit, and G. Marest, Phys. Rev. B: Condens. Matter 57, 7841 (1998).

    ADS  Google Scholar 

  26. A. P. Ramirez, P. Schiffer, S.-W. Cheong, C. H. Chen, W. Bao, T. T. M. Plasta, P. L. Gammel, D. J. Bishop, and B. Zegarski, Phys. Rev. Lett. 76, 3188 (1996).

    Article  ADS  Google Scholar 

  27. A. P. Ramirez, S.-W. Cheong, and P. Schiffer, J. Appl. Phys. 81, 5337 (1997).

    Article  ADS  Google Scholar 

  28. M. T. Fernandez-Diaz, J. L. Martinez, J. M. Alonso, and E. Herrero, Phys. Rev. B: Condens. Matter 59, 1277 (1999).

    ADS  Google Scholar 

  29. B. A. Strukov and A. P. Levanyuk, Ferroelectric Phenomena in Crystals: Physical Foundations (Nauka, Moscow, 1983; Springer, Berlin, 1998).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. S. Orlova.

Additional information

Original Russian Text © T.S. Orlova, J.Y. Laval, Ph. Monod, V.S. Zakhvalinskiĭ, V.M. Egorov, Yu.P. Stepanov, 2009, published in Fizika Tverdogo Tela, 2009, Vol. 51, No. 1, pp. 91–97.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Orlova, T.S., Laval, J.Y., Monod, P. et al. Effect of copper doping on charge ordering in La1/3Ca2/3Mn1 − y Cu y O3 (0 ≤ y ≤ 0.07). Phys. Solid State 51, 99–105 (2009). https://doi.org/10.1134/S1063783409010120

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783409010120

PACS numbers

Navigation