Skip to main content
Log in

Nonlinear optical properties of gold nanoparticles dispersed in different optically transparent matrices

  • Optical Properties
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The nonlinear optical properties of gold nanoparticles dispersed in optically transparent matrices Al2O3, ZnO, and SiO2 are investigated using the classical and off-axis techniques of the Z-scan method at a wavelength of 532 nm (radiation from a nanosecond Nd: YAG laser). The experimental data on the nonlinear refraction in composite materials are obtained. The nonlinear refractive indices and the light absorption coefficients are determined, and the real and imaginary parts of the third-order nonlinear susceptibility for the structures under investigation are calculated. It is demonstrated that, for the composite materials under consideration, the nonlinear properties of the medium under the chosen conditions of laser irradiation are predominantly determined by the Kerr effect and the contribution of this effect exceeds the contribution of the thermal lens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Tokizaki, A. Nakamura, S. Kaneko, K. Uchida, S. Omi, H. Tanji, and Y. Asahara, Appl. Phys. Lett. 65, 941 (1994).

    Article  ADS  Google Scholar 

  2. H. Inouye, K. Tanaka, I. Tanahashi, Y. Kondo, and K. Hirao, J. Phys. Soc. Jpn. 68, 3810 (1999).

    Article  ADS  Google Scholar 

  3. R. A. Ganeev, A. I. Ryasnyanskiĭ, A. L. Stepanov, and T. Usmanov, Fiz. Tverd. Tela (St. Petersburg) 45(7), 1292 (2003) [Phys. Solid State 45 (7), 1355 (2003)].

    Google Scholar 

  4. R. A. Ganeev, A. I. Ryasnyanskiy, A. L. Stepanov, and T. Usmanov, Phys. Status Solidi B 4, 935 (2004).

    ADS  Google Scholar 

  5. R. A. Ganeev, A. I. Ryasnyanskiy, A. L. Stepanov, and T. Usmanov, Opt. Quantum Electron. 36, 949 (2004).

    Article  Google Scholar 

  6. N. Pinçon, B. Palpant, D. Prot, E. Charron, and S. Debrus, Eur. Phys. J. D 19, 395 (2002).

    Article  ADS  Google Scholar 

  7. R. A. Ganeev, M. Baba, A. I. Ryasnyanskiy, M. Suzuki, and H. Kuroda, Opt. Commun. 240, 437 (2004).

    Article  ADS  Google Scholar 

  8. L. Francois, M. Mostafavi, J. Belloni, J. F. Delouis, J. Delaire, and P. Feneyrou, J. Phys. Chem. B 104, 6133 (2000).

    Article  Google Scholar 

  9. R. A. Ganeev, A. I. Ryasnyanskiy, Sh. R. Kamalov, N. V. Kamanina, I. A. Kulagin, M. K. Kodirov, and T. Usmanov, MCLCS&T, Sect. B: Nonlinear Opt. 28, 263 (2002).

    Article  Google Scholar 

  10. R. A. Ganeev, A. I. Ryasnyanskiy, S. R. Kamalov, M. K. Kodirov, and T. Usmanov, J. Phys. D: Appl. Phys. 34, 1602 (2001).

    Article  ADS  Google Scholar 

  11. G. Yang, W.-T. Wang, G.-Z. Yang, and Z.-H. Chen, Chin. Phys. Lett. 20, 924 (2003).

    Article  ADS  Google Scholar 

  12. J. M. Ballesteros, R. Serna, J. Solis, C. N. Afonso, A. K. Petford-Long, D. H. Osborne, and R. F. Haglung, Jr., Appl. Phys. Lett. 71, 2445 (1997).

    Article  ADS  Google Scholar 

  13. R. A. Ganeev, A. I. Ryasnyanskiy, A. L. Stepanov, C. Marques, R. C. da Silva, and E. Alves, Opt. Commun. 253, 205 (2005).

    Article  ADS  Google Scholar 

  14. S. S. Sarkisov, E. Williams, M. Curley, D. Ila, P. Venkateswarlu, D. B. Poker, and D. K. Hensley, Nucl. Instrum. Methods Phys. Res., Sect. B 141, 294 (1998).

    Article  ADS  Google Scholar 

  15. H. B. Liao, R. F. Xiao, J. S. Fu, H. Wang, K. S. Wong, and G. K. L. Wong, Opt. Lett. 23, 388 (1998).

    Article  ADS  Google Scholar 

  16. F. Hache, D. Ricard, C. Flytzanis, and U. Kreibig, Appl. Phys. A: Solids Surf. 47, 347 (1988).

    Article  ADS  Google Scholar 

  17. M. J. Morgan, C. Y. She, and R. L. Carman, IEEE J. Quantum Electron. 11, 259 (1975).

    Article  ADS  Google Scholar 

  18. M. Sheik-Bahae, A. A. Said, T.-H. Wei, D. J. Hagan, and E. W. van Stryland, IEEE J. Quantum Electron. 26, 760 (1990).

    Article  ADS  Google Scholar 

  19. A. Dakka, J. Lafait, C. Sella, S. Rerthier, M. Abd-Lefdil, J.-C. Martin, and M. Maaza, Appl. Opt. 39, 2745 (2000).

    Article  ADS  Google Scholar 

  20. U. Pal, E. Aguila Almanza, O. Vázquez Cuchillo, N. Koshizaki, T. Sasaki, and S. Terauchi, Sol. Energy Mater. Sol. Cells 70, 363 (2001).

    Article  Google Scholar 

  21. S. Debrus, J. Lafait, M. May, N. Pinçon, D. Prot, C. Sella, and J. Venturini, J. Appl. Phys. 88, 4469 (2000).

    Article  ADS  Google Scholar 

  22. H. Ma, A. S. L. Gomes, and Cid B. de Araujo, Appl. Phys. Lett. 59, 2666 (1999).

    Article  ADS  Google Scholar 

  23. R. Serna, J. M. Ballesteros, J. Solis, C. N. Afonso, D. H. Osborne, R. F. Haglung, and A. K. Petford-Long, Thin Solid Films 318, 96 (1998).

    Article  ADS  Google Scholar 

  24. D. H. Osborne, R. F. Haglund, F. Gonella, and F. Garrido, Appl. Phys. B: Lasers Opt. 66, 517 (1998).

    Article  ADS  Google Scholar 

  25. Ch. H. Kwak, Y. L. Lee, and S. G. Kim, J. Opt. Soc. Am. B 16, 600 (1999).

    Article  ADS  Google Scholar 

  26. R. Adair, L. L. Chase, and S. A. Payne, Phys. Rev. B: Condens. Matter 39, 3337 (1989).

    ADS  Google Scholar 

  27. R. de Salvo, A. A. Said, D. J. Hagan, E. W. van Stryland, and M. Sheik-Bahae, IEEE J. Quantum Electron. 32, 1324 (1996).

    Article  ADS  Google Scholar 

  28. X. J. Zhang, W. Ji, and S. H. Tang, J. Opt. Soc. Am. B 14, 1951 (1997).

    Article  ADS  Google Scholar 

  29. S. Mehendale, S. R. Mishra, K. S. Bindra, M. Laghate, T. S. Dhami, and K. S. Rustagi, Opt. Commun. 133, 273 (1997).

    Article  ADS  Google Scholar 

  30. B. Perrin, private communication.

  31. D. C. Look, Semicond. Sci. Technol. 20, 355 (2005).

    Article  Google Scholar 

  32. P. Esquinazi, R. Konig, and F. Pobell, Physica B (Amsterdam) 219–220, 247 (1996).

    Google Scholar 

  33. M. Falconieri, G. Salvetti, E. Cattaruza, F. Gonella, G. Mattei, P. Mazzoldi, M. Piovesan, G. Battaglin, and R. Polloni, Appl. Phys. Lett. 73, 288 (1998).

    Article  ADS  Google Scholar 

  34. D. Prot, D. B. Stout, J. Lafait, N. Pinçon, B. Palpant, and S. Debrus, J. Opt. A: Pure Appl. Opt. 4, S99 (2002).

    Article  ADS  Google Scholar 

  35. M. J. Bloemer, J. W. Haus, and P. R. Ashley, J. Opt. Soc. Am. B 7, 790 (1990).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. I. Ryasnyanskiy.

Additional information

Original Russian Text © A.I. Ryasnyanskiy, B. Palpant, S. Debrus, U. Pal, A.L. Stepanov, 2009, published in Fizika Tverdogo Tela, 2009, Vol. 51, No. 1, pp. 52–56.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ryasnyanskiy, A.I., Palpant, B., Debrus, S. et al. Nonlinear optical properties of gold nanoparticles dispersed in different optically transparent matrices. Phys. Solid State 51, 55–60 (2009). https://doi.org/10.1134/S1063783409010065

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783409010065

PACS numbers

Navigation