Skip to main content
Log in

Thermal conductivity of high-porosity biocarbon precursors of white pine wood

  • Semiconductors and Dielectrics
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

This paper reports on measurements of the thermal conductivity κ and the electrical conductivity σ of high-porosity (cellular pores) biocarbon precursors of white pine tree wood in the temperature range 5–300 K, which were prepared by pyrolysis of the wood at carbonization temperatures (T carb) of 1000 and 2400°C. The x-ray structural analysis has permitted the determination of the sizes of the nanocrystallites contained in the carbon framework of the biocarbon precursors. The sizes of the nanocrystallites revealed in the samples prepared at T carb = 1000 and 2400°C are within the ranges 12–35 and 25–70 Å, respectively. The dependences κ(T) and σ(T) are obtained for samples cut along the tree growth direction. As follows from σ(T) measurements, the biocarbon precursors studied are semiconducting. The values of κ and σ increase with increasing carbonization temperature of the samples. Thermal conductivity measurements have revealed that samples of both types exhibit a temperature dependence of the phonon thermal conductivity κph, which is not typical of amorphous (and amorphous to x-rays) materials. As the temperature increases, κph first varies proportional to T, to scale subsequently as ∼T 1.7. The results obtained are analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. K. Kardashev, Yu. A. Burenkov, B. I. Smirnov, A. R. de Arellano-Lopez, J. Martinez-Fernandez, and F. M. Varela-Feria, Fiz. Tverd. Tela 47(5), 860 (2005) [Phys. Solid State 47 (5), 886 (2005)].

    Google Scholar 

  2. L. S. Parfen’eva, T. S. Orlova, N. F. Kartenko, N. V. Sharenkova, B. I. Smirnov, I. A. Smirnov, H. Misiorek, A. Jezowski, J. Mucha, A. R. de Arellano-Lopez, J. Martinez-Fernandez, and F. M. Varela-Feria, Fiz. Tverd. Tela (St. Petersburg) 48(3), 415 (2006) [Phys. Solid State 48 (3), 441 (2006)].

    Google Scholar 

  3. L. S. Parfen’eva, B. I. Smirnov, I. A. Smirnov, D. Wlosewicz, H. Misiorek, A. Jezowski, J. Mucha, A. R. de Arellano-Lopez, J. Martinez-Fernandez, F. M. Varela-Feria, and A. I. Krivchikov, Fiz. Tverd. Tela (St. Petersburg) 48(11), 1938 (2006) [Phys. Solid State 48 (11), 2056 (2006)].

    Google Scholar 

  4. A. R. de Arellano-Lopez, J. Martinez-Fernandez, P. Gonzalez, D. Domínguez-Rodriguez, V. Fernández-Quero, and M. Singh, Int. J. Appl. Ceram. Technol. 1, 95 (2004).

    Google Scholar 

  5. P. Greil, T. Lifka, and A. Kaindl, J. Eur. Ceram. Soc. 18, 1961 (1998).

    Article  Google Scholar 

  6. C. E. Byrne and D. C. Nagle, Carbon 35, 267 (1997).

    Article  Google Scholar 

  7. C. Zollfrank and H. Siber, J. Eur. Ceram. Soc. 24, 495 (2004).

    Article  Google Scholar 

  8. J. Martinez-Fernandez, A. Munoz, A. R. de Arellano-Lopez, F. M. Varela-Feria, A. Domĭnguez-Rodriguez, and M. Singh, Acta Mater. 51, 3259 (2003).

    Article  Google Scholar 

  9. Yu. P. Kudryavtsev, S. E. Evsyukov, M. B. Guseva, V. G. Babaev, and V. V. Khvostov, Izv. Akad. Nauk, Ser. Khim. 3, 450 (1993).

    Google Scholar 

  10. A. K. Kercher and D. C. Nagle, Carbon 40, 1321 (2002); Carbon 41, 15 (2003).

    Article  Google Scholar 

  11. S. K. Gordeev and A. V. Vartanova, Zh. Prikl. Khim. (Moscow) 66, 1080 (1994); Zh. Prikl. Khim. (Moscow) 66, 1375 (1994).

    Google Scholar 

  12. C. E. Byrne and D. C. Nagle, Carbon 35, 259 (1997).

    Article  Google Scholar 

  13. Handbook of Physical Quantities, Ed. by I. S. Grigoriev and E. Z. Meilikhov (Énergoizdat, Moscow, 1991; CRC Press, Boca-Raton, FL, United States, 1996).

    Google Scholar 

  14. W. W. Tyler and A. C. Wilson, Phys. Rev. 89, 870 (1953).

    Article  ADS  Google Scholar 

  15. W. S. Rothwell, J. Appl. Phys. 39, 1840 (1968).

    Article  ADS  Google Scholar 

  16. A. Jezowski, J. Mucha, and G. Pompe, J. Phys. D: Appl. Phys. 20, 1500 (1987).

    Article  ADS  Google Scholar 

  17. A. I. Kitaigorodskiĭ, X-Ray Diffraction Analysis of Fine-Crystalline and Amorphous Materials (Tekhniko-Teoreticheskaya Literatura, Moscow, 1952) [in Russian].

    Google Scholar 

  18. B. E. Warren, Phys. Rev. 9, 693 (1941).

    Article  ADS  MathSciNet  Google Scholar 

  19. A. Guinier, X-Ray Diffraction: In Crystals, Imperfect Crystals, and Amorphous Bodies (Freeman, San Francisco, CA, United States, 1956; GIFML, Moscow, 1961).

    Google Scholar 

  20. R. N. Kyutt, É. A. Smorgonskaya, S. K. Gordeev, A. V. Grechinskaya, and A. M. Danishevskiĭ, Fiz. Tverd. Tela (St. Petersburg) 41(5), 891 (1999) [Phys. Solid State 41 (5), 808 (1999)].

    Google Scholar 

  21. A. M. Danishevskiĭ, É. A. Smorgonskaya, S. K. Gordeev, and A. V. Grechinskaya, Fiz. Tverd. Tela (St. Petersburg) 43(1), 132 (2001) [Phys. Solid State 43 (1), 137 (2001)].

    Google Scholar 

  22. É. A. Smorgonskaya, R. N. Kyutt, A. V. Shchukarev, S. K. Gordeev, and A. V. Grechinskaya, Fiz. Tekh. Poluprovodn. (St. Petersburg) 35(6), 690 (2001) [Semiconductors 35 (6), 661 (2001)].

    Google Scholar 

  23. R. N. Kyutt, A. M. Danishevskiĭ, É. A. Smorgonskaya, and S. K. Gordeev, Fiz. Tekh. Poluprovodn. (St. Petersburg) 37(7), 811 (2003) [Semiconductors 37 (7), 784 (2003)].

    Google Scholar 

  24. V. V. Popov, S. K. Gordeev, A. V. Grechinskaya, and A. M. Danishevskiĭ, Fiz. Tverd. Tela (St. Petersburg) 44(4), 758 (2002) [Phys. Solid State 44 (4), 789 (2002)].

    Google Scholar 

  25. R. N. Kyutt, É. A. Smorgonskaya, S. K. Gordeev, A. V. Grechinskaya, and A. M. Danishevskiĭ, Fiz. Tverd. Tela (St. Petersburg) 41(8), 1484 (1999) [Phys. Solid State 41 (8), 1359 (1999)].

    Google Scholar 

  26. E. A. Bel’skaya and A. S. Tarabanov, in Thermal and Physical Properties of Solids (Naukova Dumka, Kiev, 1970), p. 111 [in Russian].

    Google Scholar 

  27. A. L. Love, J. Appl. Phys. 22, 252 (1951).

    ADS  Google Scholar 

  28. F. M. Varela-Feria, PhD Thesis (Universidad de Sevilla, Seville, Spain, 2004).

  29. E. Ya. Litovskiĭ, Izv. Akad. Nauk SSSR, Neorg. Mater. 16, 559 (1980).

    Google Scholar 

  30. J. Heremans and C. P. Beetz, Jr., Phys. Rev. B: Condens. Matter 32, 1981 (1985).

    ADS  Google Scholar 

  31. J. A. Katerberg and A. C. Anderson, J. Low. Temp. Phys. 30, 739 (1978).

    Article  ADS  Google Scholar 

  32. V. V. Popov, S. K. Gordeev, A. V. Grechinskaya, and A. M. Danishevskiĭ, in Proceedings of the All-Russia Conference “Physics of Semiconductors and Semimetals,” St. Petersburg, Russia, 2002 (Herzen Russian State Pedagogical University, St. Petersburg, 2002), p. 122.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. I. Smirnov.

Additional information

Original Russian Text © L.S. Parfen’eva, T.S. Orlova, N.F. Kartenko, N.V. Sharenkova, B.I. Smirnov, I.A. Smirnov, H. Misiorek, A. Jezowski, T.E. Wilkes, K.T. Faber, 2008, published in Fizika Tverdogo Tela, 2008, Vol. 50, No. 12, pp. 2150–2159.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Parfen’eva, L.S., Orlova, T.S., Kartenko, N.F. et al. Thermal conductivity of high-porosity biocarbon precursors of white pine wood. Phys. Solid State 50, 2245–2255 (2008). https://doi.org/10.1134/S1063783408120032

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783408120032

PACS numbers

Navigation