Physics of the Solid State

, Volume 50, Issue 9, pp 1784–1788 | Cite as

Relaxation of electronic excitations in wide-gap crystals studied by femtosecond interferometry technique

  • V. NagirnyiEmail author
  • G. Geoffroy
  • S. Guizard
  • M. Kirm
  • A. Kotlov
Proceedings of the XIII Feofilov Symposium “Spectroscopy of Crystals Doped by Rare-Earth and Transition-Metal Ions” (Irkutsk, July 9–13, 2007)


Time-resolved interferometry with a 100-fs temporal resolution was applied for the first time to studying the relaxation of electronic excitations in complex oxides, namely, tungstates CDWO4 with a crystal lattice of the wolframite-type and CaWO4 with a scheelite-type lattice. Two stages of charge carrier relaxation, namely, very fast carrier trapping in 200 fs resulting in self-trapped exciton formation and a relatively slow picosecond relaxation process probably due to configurational relaxation within the oxyanion molecule and modification of the surrounding lattice, are revealed in tungstate crystals. Corresponding models of self-trapped exciton creation in tungstate crystals are discussed.

PACS numbers

72.20.Jv 78.47.+p 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. Guizard, P. Martin, Ph. Daguzan, G. Petite, P. Audebert, J. P. Geindre, A. Dos Santos, and A. Antonnetti, Europhys. Lett. 29, 401 (1995).CrossRefADSGoogle Scholar
  2. 2.
    P. Martin, S. Guizard, Ph. Daguzan, G. Petite, P. d’Oliveira, P. Meynadier, and M. Perdrix, Phys. Rev. B: Condens. Matter 55, 5799 (1997).ADSGoogle Scholar
  3. 3.
    M. J. J. Lammers, G. Blasse, and D. S. Robertson, Phys. Status Solidi A 63, 569 (1981).CrossRefGoogle Scholar
  4. 4.
    R. Grasser, E. Pitt, A. Scharmann, and G. Zimmerer, Phys. Status Solidi B 69, 359 (1975).CrossRefGoogle Scholar
  5. 5.
    V. Nagirnyi, E. Feldbach, L. Jönsson, M. Kirm, A. Lushchik, Ch. Lushchik, L. L. Nagornaja, V. D. Ryzhikov, F. Savikhin, G. Svensson, and I. A. Tupitsina, Radiat. Meas. 29, 247 (1998).CrossRefGoogle Scholar
  6. 6.
    V. Mürk, M. Nikl, E. Mihokova, and K. Nitsch, J. Phys.: Condens. Matter 9, 249 (1997).CrossRefADSGoogle Scholar
  7. 7.
    N. Saito, A. Kudo, and T. Sakata, Bull. Chem. Soc. Jpn. 69, 1241 (1996).CrossRefGoogle Scholar
  8. 8.
    A. N. Vasil’ev, in Proceedings of the 5th International Conference on Inorganic Scintillators and Their Applications, Moscow, Russia, 1999, Ed. by V. V. Mikhailin (Moscow State University, Moscow, 2000), p. 43.Google Scholar
  9. 9.
    V. V. Hizhnyakov and N. N. Kristoffel, in The Dynamical Jahn-Teller Effect in Localized Systems, Ed. by Yu. E. Perlin and M. Wagner (Elsevier Sci., Amsterdam, 1984).Google Scholar
  10. 10.
    J. Becker, A. N. Belsky, D. Bouttet, C. Dujardin, A. V. Gektin, A. Hopkirk, S. N. Ivanov, I. A. Kamenskikh, N. Y. Kirikova, V. Klimenko, V. N. Kolobanov, V. N. Makhov, P. Martin, V. V. Mikhailin, I. H. Munro, C. Mythen, P. A. Orekhanov, C. Pedrini, A. Schröder, D. A. Shaw, N. Shiran, I. N. Shpinkov, A. N. Vasil’ev, and G. Zimmerer, in Proceedings of the International Conference on Inorganic Scintillators and Their Applications (SCINT95), Delft, The Netherlands, 1995, Ed. by P. Dorenbos and C. W. E. van Eijk (Delft University Press, Delft, The Netherlands, 1996), p. 118.Google Scholar
  11. 11.
    Ph. Daguzan, P. Martin, S. Guizard, and G. Petite, Phys. Rev. B: Condens. Matter 52, 17 099 (1995).Google Scholar
  12. 12.
    M. Herget, A. Hofstaetter, T. Nickel, and A. Scharmann, Phys. Status Solidi B 141, 523 (1987).CrossRefGoogle Scholar
  13. 13.
    A. Watterich, L. Kovács, R. Würz, F. Schön, A. Hofstaetter, and A. Scharmann, J. Phys.: Condens. Matter 13, 1595 (2001).CrossRefADSGoogle Scholar
  14. 14.
    V. V. Laguta, J. Rosa, M. I. Zaritskii, M. Nikl, and Y. Usuki, J. Phys.: Condens. Matter 10, 7293 (1998).CrossRefADSGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2008

Authors and Affiliations

  • V. Nagirnyi
    • 1
    Email author
  • G. Geoffroy
    • 2
  • S. Guizard
    • 2
  • M. Kirm
    • 1
  • A. Kotlov
    • 1
  1. 1.Institute of PhysicsUniversity of TartuTartuEstonia
  2. 2.Laboratoire des Solides IrradiésCEA-CNRS Ecole PolytechniquePalaiseauFrance

Personalised recommendations