Skip to main content
Log in

Nonlinear theory of multiphonon relaxation of excited rare-earth ions in laser crystals

  • Proceedings of the XIII Feofilov Symposium “Spectroscopy of Crystals Doped By Rare-Earth and Transition-Metal Ions” (Irkutsk, July 9–13, 2007)
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

A general formula for the probability of multiphonon nonradiative transitions between J multiplets of 4f N states of trivalent rare-earth ions in a crystal derived for a nonlinear mechanism is discussed. A technique is developed for calculating the quantities involved in this formula. Particular attention is given to calculating the spectral density J (p)(Ω), which is the Fourier transform (at the transition frequency) of the pth power of the correlation function K(t) of host ion displacements. Based on the central limit theorem from probability theory, an approximation is proposed for the spectral density J (p)(Ω). The theoretical values of nonradiative multiphonon transition rates are compared with experimental ones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Frenkel, Phys. Rev. 37, 17 (1931).

    Article  MATH  ADS  Google Scholar 

  2. Ya. I. Frenkel’, Zh. Éksp. Teor. Fiz. 6, 647 (1936).

    Google Scholar 

  3. T. T. Basiev, Yu. V. Orlovskii, K. K. Pukhov, and F. Auzel, Laser Phys. 7, 1139 (1997).

    Google Scholar 

  4. K. K. Pukhov, T. T. Basiev, Yu. V. Orlovskii, and M. Glasbeek, J. Lumin. 76/77, 586 (1998).

    Article  Google Scholar 

  5. F. S. Ermeneux, C. Goutaudier, R. Moncorge, Y. Sun, R. L. Cone, E. Zannoni, E. Cavalli, and M. Bettinelli, Phys. Rev. B: Condens. Matter 61, 3915 (2000).

    ADS  Google Scholar 

  6. K. Huang, Proc. R. Soc. London, Ser. A 204, 406 (1950).

    Article  MATH  ADS  Google Scholar 

  7. A. S. Davydov, Zh. Éksp. Teor. Fiz. 24, 197; Zh. Éksp. Teor. Fiz. 24, 396 (1953).

    Google Scholar 

  8. M. A. Krivoglaz, Zh. Éksp. Teor. Fiz. 25, 191 (1953).

    Google Scholar 

  9. R. Kubo and Y. Toyozawa, Prog. Theor. Phys. 13, 160 (1955).

    Article  MATH  ADS  Google Scholar 

  10. Yu. E. Perlin, Usp. Fiz. Nauk 80, 553 (1963) [Sov. Phys.—Usp. 6, 542 (1963)].

    MathSciNet  Google Scholar 

  11. T. Miyakawa and D. L. Dexter, Phys. Rev. B: Solid State 1, 2961 (1970).

    ADS  Google Scholar 

  12. R. Englman, Non-Radiative Decay of Ions and Molecules in Solids (North-Holland, Amsterdam, 1979).

    Google Scholar 

  13. F. K. Fong, in Handbook on the Physics and Chemistry of Rare Earths, Ed. by K. A. Gschneidner, Jr. and L. Eyring (North-Holland, Amsterdam, 1979), Vol. 4, p. 317.

    Google Scholar 

  14. B. Di Bartolo, in Radiationless Processes, Ed. by B. Di Bartolo (Plenum, New York, 1980), p. 39.

    Google Scholar 

  15. F. Auzel, in Radiationless Processes, Ed. by B. Di Bartolo (Plenum, New York, 1980), p. 213.

    Google Scholar 

  16. B. Henderson and G. F. Imbusch, Optical Spectroscopy of Inorganic Solids (Clarendon, Oxford, 1989).

    Google Scholar 

  17. R. H. Bartram, J. Phys. Chem. Solids 51, 641 (1996).

    Article  ADS  Google Scholar 

  18. A. Abragam and B. Bleaney, Electron Paramagnetic Resonance of Transition Ions (Clarendon, Oxford, 1970; Mir, Moscow, 1973).

    Google Scholar 

  19. B. Z. Malkin, in Springer Series in Materials Science, Vol. 83: Spectroscopic Properties of Rare Earths in Optical Materials, Ed. by G. Liu and B. Jacquier (Springer-Verlag, Berlin, 2005), Chap. 3, p. 130.

    Google Scholar 

  20. W. E. Hagston and J. E. Lowther, Physica (Amsterdam) 70, 40 (1973).

    Article  ADS  Google Scholar 

  21. J. E. Lowther and W. E. Hagston, Physica (Amsterdam) 65, 172 (1973); Physica (Amsterdam) 70, 27 (1973).

    Article  ADS  Google Scholar 

  22. K. K. Pukhov and V. P. Sakun, Phys. Status Solidi B 95, 391 (1979).

    Article  Google Scholar 

  23. K. K. Pukhov, Fiz. Tverd. Tela (Leningrad) 31(5), 144 (1989) [Sov. Phys. Solid State 31 (9), 1557 (1989)].

    Google Scholar 

  24. B. Z. Malkin, in Spectroscopy of Solids Containing Rare-Earth Ions, Ed. by A. A. Kaplyanskii and R. M. Macfarlane (Elsevier Science, Amsterdam, 1987), p. 13.

    Google Scholar 

  25. K. K. Pukhov and V. P. Sakun, in Physics and Spectroscopy of Laser Crystals, Ed. by A. A. Kaminskii (Nauka, Moscow, 1986), p. 50 [in Russian].

    Google Scholar 

  26. A. J. Freeman and R. E. Watson, Phys. Rev. 127, 2058 (1962).

    Article  ADS  Google Scholar 

  27. O. J. Sovers, J. Phys. Chem. Solids 28, 1073 (1966).

    Article  ADS  Google Scholar 

  28. E. Clementi and A. D. McLean, Phys. Rev. [Sect.] A 133, 419 (1964).

    ADS  Google Scholar 

  29. E. Clementi and C. Roetti, Atomic Data and Nuclear Data Table (Academic, New York, 1974), Vol. 14, p. 177.

    Google Scholar 

  30. W. T. Carnall, H. Crosswhite, and H. M. Crosswhite, Energy Level Structure and Transition Probabilities in the Spectra of the Trivalent Lanthanides in LaF 3 (Argonne National Laboratory, Internal Report NANL-78-XX-95, 1977).

  31. B. Z. Malkin, K. K. Pukhov, S. K. Saikin, E. I. Baibekov, and A. R. Zakirov, J. Mol. Struct. 838, 170 (2007).

    Article  ADS  Google Scholar 

  32. Yu. V. Orlovskii, R. J. Reeves, R. C. Powell, T. T. Basiev, and K. K. Pukhov, Phys. Rev. B: Condens. Matter 49, 3821 (1994).

    ADS  Google Scholar 

  33. Yu. V. Orlovskii, K. K. Pukhov, T. T. Basiev, and T. Tsuboi, Opt. Mater. 4, 583 (1995).

    Article  Google Scholar 

  34. T. T. Basiev, Yu. V. Orlovskii, K. K. Pukhov, V. B. Sigachev, M. E. Doroshenko, and I. N. Vorob’ev, J. Lumin. 68, 241 (1996).

    Article  Google Scholar 

  35. Yu. V. Orlovskii, T. T. Basiev, K. K. Pukhov, N. A. Glushkov, O. K. Alimov, and S. B. Mirov, in Proceedings of the 19th OSA Topical Meeting on Advanced Solid-State Photonics, Santa Fe, NM, United States, 2004, Ed. by G. Quarles (Optical Society of America, Washington, D.C., TOPS, 2004), Vol. 94, p. 440.

    Google Scholar 

  36. M. M. Elcombe, and A. W. Pryor, J. Phys. C: Solid State Phys. 3, 492 (1970).

    Article  ADS  Google Scholar 

  37. M. M. Elcombe, J. Phys. C: Solid State Phys. 5, 2702 (1972).

    Article  ADS  Google Scholar 

  38. J. P. Hurrel and V. J. Minkiewicz, Solid State Commun. 8, 463 (1970).

    Article  ADS  Google Scholar 

  39. M. H. Dickens and M. T. Hutchings, J. Phys. C: Solid State Phys. 11, 461 (1978).

    Article  ADS  Google Scholar 

  40. V. P. Gapontsev, M. R. Sirtlanov, and W. Yen, J. Lumin. 31/32, 201 (1984).

    Article  Google Scholar 

  41. O. V. Balagura and A. I. Ivanov, Opt. Spektrosk. 62(5), 1043 (1987) [Opt. Spectrosc. 62 (5), 616 (1987)].

    Google Scholar 

  42. V. L. Ermolaev, E. B. Sveshnikova, and E. N. Bodunov, Usp. Fiz. Nauk 166(3), 279 (1996) [Phys.—Usp. 39 (3), 261 (1996)].

    Article  Google Scholar 

  43. S. A. Payne and C. Bibeua, J. Lumin. 79, 143 (1998).

    Article  Google Scholar 

  44. K. K. Pukhov, F. Pellé, and J. Heber, Mol. Phys. 101, 1001 (2003).

    Article  ADS  Google Scholar 

  45. M. D. Sturge, Phys. Rev. B: Solid State 8, 6 (1973).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. K. Pukhov.

Additional information

Original Russian Text © K.K. Pukhov, 2008, published in Fizika Tverdogo Tela, 2008, Vol. 50, No. 9, pp. 1540–1546.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pukhov, K.K. Nonlinear theory of multiphonon relaxation of excited rare-earth ions in laser crystals. Phys. Solid State 50, 1597–1604 (2008). https://doi.org/10.1134/S1063783408090011

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783408090011

PACS numbers

Navigation