Skip to main content
Log in

Phase x-T diagram of actual solid solutions of the (1 − x)PbZrO3-xPbTiO3 system (0.37 ≤ x ≤ 0.57)

  • Lattice Dynamics and Phase Transitions
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

Ceramics of PbZr1 − x Ti x O3 solid solutions were systematically studied in the range 0.37 ≤ x ≤0.57. The x-T phase diagram of the system is constructed in the range 25°C ≤ T ≤ 650°C. The diagram has a region of an indefinite symmetry in the vicinity of the transition to the nonpolar cubic phase. It is established that solid solutions in this region are characterized by weak distortions and temperature-time instability of the crystal structure. Three concentration regions are separated differing in the value of the jump in the unit cell volume ΔV at the line of transitions from the rhombohedral (tetragonal) phase to the region of indefinite symmetry. It is revealed that there are three temperature ranges differing in the behavior of the temperature dependence of the inverse permittivity, which are due to the existence of two critical Curie points at the boundary separating the ferroelectric phases from the cubic phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Ya. Dantsiger, L. A. Reznichenko, O. N. Razumovskaya, L. D. Grineva, R. U. Devlikanova, S. I. Dudkina, N. V. Dergunova, and A. N. Klevtsov, Highly Effective Piezoelectric Ceramic Materials: A Reference Book (Kniga, Rostov-on-Don, 1994) [in Russian].

    Google Scholar 

  2. A. Ya. Dantsiger, O. N. Razumovskaya, L. A. Reznichenko, V. P. Sakhnenko, A. N. Klevtsov, S. I. Dudkina, L. A. Shilkina, N. V. Dergunova, and A. N. Rybyanets, Multicomponent Systems of Ferroelectric Complex Oxides: Physics, Crystal Chemistry, and Technology. Some Aspects of the Design of Piezoelectric Materials (Rostov State University, Rostov-on-Don, 2001–2002), Vols. 1, 2 [in Russian].

    Google Scholar 

  3. B. Noheda, Curr. Opin. Solid State Mater. Sci. 6, 27 (2002).

    Article  Google Scholar 

  4. B. Sawaguchi, J. Phys. Soc. Jpn. 8, 615 (1953).

    Article  ADS  Google Scholar 

  5. V. Tennery, J. Am. Ceram. Soc. 49, 483 (1966).

    Article  Google Scholar 

  6. B. A. Scott and G. Burns, J. Am. Ceram. Soc. 55, 331 (1972).

    Article  Google Scholar 

  7. B. Jaffe, W. Cook, and H. Jaffe, Piezoelectric Ceramics (Academic, London, 1971; Mir, Moscow, 1974).

    Google Scholar 

  8. B. Noheda, D. E. Cox, G. Shirane, J. A. Gonzalo, L. E. Cross, and S.-E. Park, Appl. Phys. Lett. 74, 2059 (1999).

    Article  ADS  Google Scholar 

  9. N. G. Leont’ev, V. G. Smotrakov, and E. G. Fesenko, Izv. Akad. Nauk SSSR, Neorg. Mater. 18, 449 (1982).

    Google Scholar 

  10. N. G. Leont’ev, O. E. Fesenko, and V. G. Smotrakov, Fiz. Tverd. Tela (Leningrad) 25(7), 1958 (1983) [Sov. Phys. Solid State 25 (7), 1130 (1983)].

    Google Scholar 

  11. E. G. Fesenko, V. V. Eremkin, and V. G. Smotrakov, Fiz. Tverd. Tela (Leningrad) 28(1), 324 (1986) [Sov. Phys. Solid State 28 (1), 181 (1986)].

    Google Scholar 

  12. E. G. Fesenko, V. V. Eremkin, V. G. Smotrakov, S. G. Shmal’ko, and A. T. Kozakov, Kristallografiya 32(4), 1049 (1987) [Sov. Phys. Crystallogr. 32 (4), 617 (1987)].

    Google Scholar 

  13. V. V. Eremkin, V. G. Smotrakov, and E. G. Fesenko, Fiz. Tverd. Tela (Leningrad) 31(6), 156 (1989) [Sov. Phys. Solid State 31 (6), 1002 (1989)].

    Google Scholar 

  14. V. V. Eremkin, V. G. Smotrakov, and E. G. Fesenko, Ferroelectrics 110, 137 (1990).

    Google Scholar 

  15. M. Rane, A. Navrotsky, and G. A. Rossetti, Jr., Solid State Chem. 161, 402 (2001).

    Article  ADS  Google Scholar 

  16. G. A. Rossetti, Jr., J. P. Cline, Y. M. Chiang, and A. Navrotsky, J. Phys.: Condens. Matter 14, 1831 (2002).

    Article  Google Scholar 

  17. E. G. Fesenko, The Perovskite Family and Ferroelectricity (Atomizdat, Moscow, 1972) [in Russian].

    Google Scholar 

  18. L. A. Shebanov, Extended Abstract of the Candidate’s Dissertation (Institute of Physics, Academy of Sciences of Latvian Soviet Socialist Republic, Riga, 1978) [in Russian].

    Google Scholar 

  19. A. R. Shternberg, in Electro-Optical Ferroelectric Ceramic Materials (Latvian University Press, Riga, 1977), p. 5 [in Russian].

    Google Scholar 

  20. A. R. Shternberg, V. Ya. Fritsberg, K. Ya. Borman, L. A. Shebanov, I. T. Perro, P. A. Fritsberg, É. Kh. Birk, and A. V. Zirnite, in Electro-Optical Ferroelectric Ceramic Materials (Latvian University Press, Riga, 1977), p. 138 [in Russian].

    Google Scholar 

  21. O. A. Demchenko, Extended Abstract of the Candidate’s Dissertation (Research Institute of Physics, Rostov State University, Rostov-on-Don, 2006) [in Russian].

    Google Scholar 

  22. W. Dmowski, T. Egami, L. Farber, and P. K. Davies, in AIP Conference Proceedings on Fundamental Physics of Ferroelectrics: The 11th Williamsbuty Workshop, Virginia, United States, 2001 (Virginia, 2001), Vol. 582, p. 33.

    ADS  Google Scholar 

  23. Yu. M. Gufan and V. P. Sakhnenko, Zh. Éksp. Teor. Fiz. 69(4), 1428 (1972) [Sov. Phys. JETP 42 (4), 728 (1972)].

    Google Scholar 

  24. G. A. Rossetti, Jr. and A. J. Navrotsky, Solid State Chem. 144, 188 (1990).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. A. Reznichenko.

Additional information

Original Russian Text © L.A. Reznichenko, L.A. Shilkina, O.N. Razumovskaya, E.A. Yaroslavtseva, S.I. Dudkina, O.A. Demchenko, Yu.I. Yurasov, A.A. Esis, I.N. Andryushina, 2008, published in Fizika Tverdogo Tela, 2008, Vol. 50, No. 8, pp. 1469–1475.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reznichenko, L.A., Shilkina, L.A., Razumovskaya, O.N. et al. Phase x-T diagram of actual solid solutions of the (1 − x)PbZrO3-xPbTiO3 system (0.37 ≤ x ≤ 0.57). Phys. Solid State 50, 1527–1533 (2008). https://doi.org/10.1134/S1063783408080234

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783408080234

PACS numbers

Navigation