Skip to main content
Log in

Peculiarities of antiferromagnetic ordering in orthorhombic LiMnO2

  • Magnetism and Ferroelectricity
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

Data on the antiferromagnetic ordering in orthorhombic lithium manganite LiMnO2 are obtained from magnetic-susceptibility, calorimetry, and nuclear magnetic resonance studies. The minimal hysteresis and the absence of jumps in the temperature dependences of the sublattice magnetization M(T) and the magnetic susceptibility near T N indicate that the ordering occurs through a continuous second-order phase transition. Within the critical temperature range, the M(TT N) variation is satisfactorily described by a power-law dependence with a critical exponent β = 0.25(4), which is substantially smaller than that predicted for 3D magnetic systems with isotropic Heisenberg exchange. The band structure of orthorhombic LiMnO2 is calculated using the LMTO-ASA method. Taking into account the spin states of manganese ions, an adequate pattern is obtained for the density-of-states distribution with an energy gap near the Fermi level (∼0.7 eV), which is in agreement with the measured electrical parameters of lithium manganite. The calculations demonstrate that the exchange interactions between Mn3+ ions leading to antiferromagnetic ordering are significantly anisotropic. It is found that small paramagnetic regions persist in the manganite below the Néel temperature, and it is concluded that the reason for this is partial structural disordering of LiMnO2. As a result, a certain fraction of the manganese positions is occupied by lithium ions (LiMn) and vise versa (MnLi). These defects are not involved in the formation of the ordered magnetic structure and compose a paramagnetic fraction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. A. Hewston and B. L. Chamberland, J. Phys. Chem. Solids 48, 97 (1987).

    Article  ADS  Google Scholar 

  2. D. G. Kellerman, Usp. Khim. 70, 874 (2001).

    Google Scholar 

  3. P. F. Bongers, PhD Thesis (The University of Leiden, The Netherlands, 1957).

  4. J. E. Greedan, N. P. Raju, and I. J. Davidson, J. Solid State Chem. 128, 209 (1997).

    Article  ADS  Google Scholar 

  5. D. G. Kellerman, J. E. Medvedeva, V. S. Gorshkov, A. I. Kurbakov, V. G. Zubkov, A. P. Tyutyunnik, and V. A. Trunov, Solid State Sci. 9, 196 (2007).

    Article  ADS  Google Scholar 

  6. E. V. Zabolotskaya, L. V. Zolotukhina, V. S. Gorshkov, V. V. Karelina, and D. G. Kellerman, Zh. Neorg. Khim. 46(8), 1358 (2001) [Russ. J. Inorg. Chem. 46 (8), 1224 (2001)].

    Google Scholar 

  7. G. Ditrich and R. Hoppe, Z. Anorg. Allg. Chem. 368, 262 (1969).

    Article  Google Scholar 

  8. O. K. Andersen and O. Jepsen, Phys. Rev. Lett. 53, 2571 (1984).

    Article  ADS  Google Scholar 

  9. A. I. Lichtenstein, V. I. Anisimov, and J. Zaanen, Phys. Rev. B: Condens. Matter 52, R5467 (1995).

    ADS  Google Scholar 

  10. D. G. Kellerman, V. S. Gorshkov, V. G. Zubkov, V. A. Perelyaev, V. R. Galakhov, E. Z. Kurmaev, S. Uhlenbrock, and M. Neumann, Zh. Neorg. Khim. 42(6), 1012 (1997) [Russ. J. Inorg. Chem. 42 (6), 914 (1997)].

    Google Scholar 

  11. Yu. V. Rakitin and V. T. Kalinnikov, Modern Magnetochemistry (Nauka, Leningrad, 1984) [in Russian].

    Google Scholar 

  12. R. L. Martin, in Physical Methods in Advanced Inorganic Chemistry, Ed. by H. A. O. Hill and P. Day (Interscience, London, 1968; Mir, Moscow, 1970).

    Google Scholar 

  13. M. E. Fisher, Proc. R. Soc. London, Ser. A 254, 66 (1960).

    Article  ADS  Google Scholar 

  14. A. Abragam, The Principles of Nuclear Magnetism (Clarendon, Oxford, 1961; Inostrannaya Literatura, Moscow, 1963).

    Google Scholar 

  15. G. C. Carter, L. H. Bennett, and D. J. Kahan, in Progress in Material Science, Ed. by B. Chalmers, J. W. Christian, and T. B. Massalski, (Pergamon, Oxford, 1977), Vol. 20, Part 1.

    Google Scholar 

  16. V. S. Gorshkov, V. V. Karelina, and D. G. Kellerman, Abstracts of Papers of the All-Russian Conference “Chemistry of the Solid State and Functional Materials,” Yekaterinburg, Russia, 2000 (Yekaterinburg, 2000), p. 108 [in Russian].

  17. N. Shukla and P. Rajendra, J. Phys. Chem. Solids 67, 1731 (2006).

    Article  ADS  Google Scholar 

  18. V. R. Galakhov, M. A. Korotin, N. A. Ovechkina, E. Z. Kurmaev, V. S. Gorshkov, D. G. Kellerman, S. Bartkowski, and M. Neumann, Eur. Phys. J. B 14, 281 (2000).

    Article  ADS  Google Scholar 

  19. J. S. Smart, Effective Field Theories of Magnetism (Saunders, Philadelphia, 1966; Mir, Moscow, 1968).

    Google Scholar 

  20. R. P. Singh, Z. C. Tao, and M. Singh, Phys. Rev. B: Condens. Matter 46, 1244 (1992).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. G. Kellerman.

Additional information

Original Russian Text © D.G. Kellerman, N.A. Zhuravlev, S.V. Verkhovskiĭ, E.Yu. Medvedev, A.V. Korolev, J.E. Medvedeva, 2008, published in Fizika Tverdogo Tela, 2008, Vol. 50, No. 7, pp. 1243–1251.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kellerman, D.G., Zhuravlev, N.A., Verkhovskiĭ, S.V. et al. Peculiarities of antiferromagnetic ordering in orthorhombic LiMnO2 . Phys. Solid State 50, 1294–1302 (2008). https://doi.org/10.1134/S1063783408070160

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783408070160

PACS numbers

Navigation