Skip to main content
Log in

Influence of grain boundary sliding on fracture toughness of nanocrystalline ceramics

  • Defects and Impurity Centers, Dislocations, and Physics of Strength
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

A theoretical model is proposed describing a new physical microscopic mechanism of increased fracture toughness of nanocrystalline ceramics. According to this model, when a ceramic with a microcrack is deformed, intensive grain boundary sliding occurs near the crack tip under certain conditions. This sliding is accompanied by the formation of an array of disclination dipoles (rotational defects) producing elastic stresses. These stresses partially compensate the high local stresses concentrated near the microcrack tip and thereby hamper the microcrack growth. The proposed model is used to theoretically estimate the increase in the critical microcrack length (the length above which the catastrophic growth of microcracks occurs) caused by the formation of disclination dipoles during grain boundary sliding in nanoceramics. The increase in the critical microcrack length is a quantitative characteristic of the increased fracture toughness of nanoceramics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. D. Kuntz, G.-D. Zhan, and A. K. Mukherjee, MRS Bull. 29, 22 (2004).

    Google Scholar 

  2. V. A. Pozdnyakov and A. M. Glezer, Fiz. Tverd. Tela (St. Petersburg) 47(5), 793 (2005) [Phys. Solid State 47 (5), 817 (2005)]

    Google Scholar 

  3. B. I. Smirnov, V. V. Shpeizman, and V. I. Nikolaev, Fiz. Tverd. Tela (St. Petersburg) 47(5), 816 (2005) [Phys. Solid State 47 (5), 840 (2005)].

    Google Scholar 

  4. I. Szlufarska, A. Nakano, and P. Vashista, Science (Washington) 309, 911 (2005).

    Article  ADS  Google Scholar 

  5. X. Xu, T. Nishimura, N. Hirosaki, R.-J. Xie, Y. Yamamoto, and H. Tanaka, Acta Mater. 54, 255 (2006).

    Article  Google Scholar 

  6. V. V. Shpeĭzman, V. I. Nikolaev, N. N. Peschenskaya, A. E. Romanov, B. I. Smirnov, I. A. Aleksandrov, N. A. Enikeev, V. U. Kazykhanov, and A. A. Nazarov, Fiz. Tverd. Tela (St. Petersburg) 49(4), 644 (2007) [Phys. Solid State 49 (4), 678 (2007)].

    Google Scholar 

  7. M. Yu. Gutkin, I. A. Ovid’ko, and N. V. Skiba, Fiz. Tverd. Tela (St. Petersburg) 49(2), 252 (2007) [Phys. Solid State 49 (2), 261 (2007)]; Fiz. Tverd. Tela (St. Petersburg) 49 (5), 830 (2007) [Phys. Solid State 49 (5), 874 (2007)].

    Google Scholar 

  8. G. A. Malygin, Fiz. Tverd. Tela (St. Petersburg) 49(6), 961 (2007) [Phys. Solid State 49 (6), 1013 (2007)]; Fiz. Tverd. Tela (St. Petersburg) 49 (12), 2161 (2007) [Phys. Solid State 49 (12), 2266 (2007)].

    Google Scholar 

  9. S. Veprek and A. S. Argon, J. Vac. Sci. Technol. 20, 650 (2002).

    Article  Google Scholar 

  10. C. C. Koch, I. A. Ovid’ko, S. Seal, and S. Veprek, Structural Nanocrystalline Materials: Fundamentals and Applications (Cambridge University Press, Cambridge, 2007).

    Google Scholar 

  11. M. Yu. Gutkin, I. A. Ovid’ko, and N. V. Skiba, Preprint No. 159 IPMash RAN (Institute of Problems of Mechanical Engineering, Russian Academy of Sciences, St. Petersburg, 2007).

  12. I. A. Ovid’ko and A. G. Sheinerman, Appl. Phys. Lett. 90, 171 927 (2007).

    Google Scholar 

  13. Fracture Mechanics and Strength of Materials: A Handbook, Ed. by V. V. Panasyuk (Naukova Dumka, Kiev, 1988), Vol. 1 [in Russian].

    Google Scholar 

  14. V. I. Vladimirov and A. E. Romanov, Disclinations in Crystals (Nauka, Leningrad, 1986) [in Russian].

    Google Scholar 

  15. J. Hirth and J. Lothe, Theory of Dislocations (McGraw-Hill, New York, 1968; Atomizdat, Moscow, 1972).

    Google Scholar 

  16. S. P. Mehandru and A. B. Anderson, Phys. Rev. B: Condens. Matter 42, 9040 (1990).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. A. Ovid’ko.

Additional information

Original Russian Text © I.A. Ovid’ko, N.V. Skiba, A.G. Sheinerman, 2008, published in Fizika Tverdogo Tela, 2008, Vol. 50, No. 7, pp. 1211–1215.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ovid’ko, I.A., Skiba, N.V. & Sheinerman, A.G. Influence of grain boundary sliding on fracture toughness of nanocrystalline ceramics. Phys. Solid State 50, 1261–1265 (2008). https://doi.org/10.1134/S1063783408070123

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783408070123

PACS numbers

Navigation