Skip to main content
Log in

New method for growing silicon carbide on silicon by solid-phase epitaxy: Model and experiment

  • Semiconductors and Dielectrics
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

A new method of solid-state epitaxy of silicon carbide (SiC) on silicon (Si) is proposed theoretically and realized experimentally. Films of various polytypes of SiC on Si(111) grow through a chemical reaction (at T = 1100–1400°C) between single-crystal silicon and gaseous carbon oxide CO (at p = 10–300 Pa). Some silicon atoms transform into gaseous silicon oxide SiO and escape from the system, which brings about the formation of vacancies and pores in the silicon near the interface between the silicon and the silicon carbide. These pores provide significant relaxation of the elastic stresses caused by the lattice misfit between Si and SiC. X-ray diffraction, electron diffraction, and electron microscopy studies and luminescence analysis showed that the silicon carbide layers are epitaxial, homogeneous over the thickness, and can contain various polytypes and a mixture of them, depending on the growth conditions. The typical pore size is 1 to 5 μm at film thicknesses of ∼20 to 100 nm. Thermodynamic nucleation theory is generalized to the case where a chemical reaction occurs. Kinetic and thermodynamic theories of this growth mechanism are constructed, and the time dependences of the number of new-phase nuclei, the concentrations of chemical components, and the film thickness are calculated. A model is proposed for relaxation of elastic stresses in a film favored by vacancies and pores in the substrate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Silicon Carbide: A Review of Fundamental Questions and Application to Current Device Technology, Ed. by W. J. Choyke, H. M. Matsunami, and G. Pensl (Akademie, Berlin, 1998), Vols. I, II.

    Google Scholar 

  2. A. Fissel, Phys. Rep. 379, 149 (2003).

    Article  ADS  Google Scholar 

  3. S. Nishino, J. A. Powell, and H. A. Will, Appl. Phys. Lett. 42, 460 (1983).

    Article  ADS  Google Scholar 

  4. C. Ricciardi, E. Aimo Boot, F. Gioegis, P. Mandracci, U. Meotto, and G. Barucco, Appl. Surf. Sci. 238, 331 (2004).

    Article  ADS  Google Scholar 

  5. Y. Abe, J. Komiyama, S. Suzuki, and H. Nakanishi, J. Cryst. Growth 283, 41 (2005).

    Article  ADS  Google Scholar 

  6. J. Tolle, R. Roucka, P. A. Crozier, A. V. G. Chizmeshya, I. S. T. Tsong, and J. Kouvetakis, Appl. Phys. Lett. 81, 2181 (2002).

    Article  ADS  Google Scholar 

  7. N. S. Savkina, V. V. Ratnikov, A. Yu. Rogachev, V. B. Shuman, A. S. Tregubova, and A. A. Volkova, Fiz. Tekh. Poluprovodn. (St. Petersburg) 36(7), 812 (2002) [Semiconductors 36 (7), 758 (2002)].

    Google Scholar 

  8. A. R. Bushroa, C. Jacob, H. Saijo, and S. Nishino, J. Cryst. Growth 271, 200 (2004).

    Article  ADS  Google Scholar 

  9. S. A. Kukushkin, A. V. Osipov, and N. A. Feoktistov, RF Patent Appl. No. 2 008 102 398 (January 22, 2008).

  10. C. J. Mogab and H. J. Leamy, J. Appl. Phys. 45, 1075 (1974).

    Article  ADS  Google Scholar 

  11. G. Dufour, F. Rouchet, F. C. Stedile, Ch. Poncey, M. de Crescenzi, R. Gunnella, and M. Froment, Phys. Rev. B: Condens. Matter 56, 4266 (1997).

    ADS  Google Scholar 

  12. V. Palermo, A. Parisini, and D. Jones, Surf. Sci. 600, 1140 (2006).

    Article  ADS  Google Scholar 

  13. M. Di Ventra and S. T. Pantelides, Phys. Rev. Lett. 83, 1628 (1999).

    Article  Google Scholar 

  14. S. Wang, M. Di Ventra, S. G. Kim, and S. T. Pantelides, Phys. Rev. Lett. 86, 5946 (2001).

    Article  ADS  Google Scholar 

  15. Thermodynamical Properties of Individual Substances, Ed. by V. P. Glushko (Nauka, Moscow, 1979), Vols. 1, 2.

    Google Scholar 

  16. P. Patzner, A. V. Osipov, and P. Hess, Appl. Phys. A: Mater. Sci. Process. 85, 145 (2006).

    Article  ADS  Google Scholar 

  17. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 5: Statistical Physics (Nauka, Moscow, 1976; Butterworth-Heinemann, Oxford, 1984).

    Google Scholar 

  18. T. de Donder and P. van Rysselberghe, Thermodynamic Theory of Affinity: A Book of Principles (Oxford University Press, Oxford, 1936; Metallurgiya, Moscow, 1984).

    Google Scholar 

  19. I. Prigogine and R. Defay, Chemical Thermodynamics (Longman, London, 1954; Nauka, Novosibirsk, 1966).

    Google Scholar 

  20. S. A. Kukushkin and A. V. Osipov, Usp. Fiz. Nauk 168(10), 1083 (1998) [Phys.-Usp. 41 (10), 983 (1998)].

    Article  Google Scholar 

  21. S. A. Kukushkin, Usp. Mekh. 2(2), 21 (2003).

    MathSciNet  Google Scholar 

  22. S. A. Kukushkin, J. Appl. Phys. 98, 033 503 (2005).

    Google Scholar 

  23. L. A. Zhukova and M. A. Gurevich, Electron Diffraction Analysis of Surface Layers and Films of Semiconductors (Metallurgiya, Moscow, 1971) [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Kukushkin.

Additional information

Original Russian Text © S.A. Kukushkin, A.V. Osipov, 2008, published in Fizika Tverdogo Tela, 2008, Vol. 50, No. 7, pp. 1188–1195.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kukushkin, S.A., Osipov, A.V. New method for growing silicon carbide on silicon by solid-phase epitaxy: Model and experiment. Phys. Solid State 50, 1238–1245 (2008). https://doi.org/10.1134/S1063783408070081

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783408070081

PACS numbers

Navigation