Advertisement

Physics of the Solid State

, Volume 50, Issue 6, pp 1150–1156 | Cite as

Radioelectric effect in a superlattice under the action of an elliptically polarized electromagnetic wave

  • S. V. KryuchkovEmail author
  • E. I. Kukhar’
  • E. S. Sivashova
Low-Dimensional Systems and Surface Physics

Abstract

The density of the current associated with the drag of charge carriers in a superlattice by an elliptically polarized electromagnetic wave is calculated. Two cases of the mutual orientation of the Umov-Poynting vector and the superlattice axis, i.e., their parallel and perpendicular orientations, are analyzed. It is shown that, for the parallel orientation, the radioelectric effect can change sign. The influence of the longitudinal dc electric field on the radioelectric effect is investigated under the conditions where a circularly polarized electromagnetic wave propagates along the superlattice axis. The current density is studied as a function of the electric field strength and the electromagnetic wave intensity. It is demonstrated that the direction of the electric current is changed at specific values of the dc field strength and the wave intensity.

PACS numbers

72.30.+q 73.21.Cd 78.67.-n 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. Sigg, S. Graf, M. H. Kwakernaak, B. Margotte, D. Erni, P. Van Son, and K. Kohler, Superlattices Microstruct. 19, 105 (1996).CrossRefADSGoogle Scholar
  2. 2.
    M. F. Kimmitt, C. R. Pidgeon, D. A. Jaroszynski, R. J. Bakker, A. F. G. van der Meer, and D. Oepts, Int. J. Infrared Millimeter Waves 13, 1065 (1992).CrossRefADSGoogle Scholar
  3. 3.
    A. Grinberg and S. Luryi, Phys. Rev. B: Condens. Matter 38, 87 (1988).ADSGoogle Scholar
  4. 4.
    S. D. Ganichev, H. Ketterl, E. V. Beregulin, and W. Prettl, Physica B (Amsterdam) 272, 464 (1999).ADSGoogle Scholar
  5. 5.
    A. A. Ignatov, Fiz. Tverd. Tela (Leningrad) 22(11), 3319 (1980) [Sov. Phys. Solid State 22 (11), 1942 (1980)].Google Scholar
  6. 6.
    É. M. Épshteĭn, Izv. Vyssh. Uchebn. Zaved., Radiofiz. 24, 514 (1981).Google Scholar
  7. 7.
    S. V. Kryuchkov and A. I. Shapovalov, Opt. Spektrosk. 81(2), 336 (1996) [Opt. Spectrosc. 81 (2), 305 (1996)].Google Scholar
  8. 8.
    M. V. Vyazovskiĭ, S. V. Kryuchkov, and G. A. Syrodoev, Fiz. Tverd. Tela (St. Petersburg) 35(10), 2829 (1993) [Phys. Solid State 35 (10), 1400 (1993)].Google Scholar
  9. 9.
    M. V. Vyazovskiĭ and S. V. Kryuchkov, Fiz. Tekh. Poluprovodn. (St. Petersburg) 26(1), 184 (1992) [Sov. Phys. Semicond. 26 (1), 104 (1992)].Google Scholar
  10. 10.
    F. T. Vasko, Phys. Rev. B: Condens. Matter 53, 9576 (1996).ADSGoogle Scholar
  11. 11.
    Xin Chen and O. Keller, Phys. Status Solidi B 212, 359 (1999).CrossRefGoogle Scholar
  12. 12.
    S. Graf, H. Sigg, K. Köhler, and W. Bächtold, Physica E (Amsterdam) 7, 200 (2000).Google Scholar
  13. 13.
    A. Vengurlekar and T. Ishihara, Appl. Phys. Lett. 87, 091118-1-3 (2005).Google Scholar
  14. 14.
    V. A. Shalygin, H. Diehl, Ch. Hoffmann, S. N. Danilov, T. Herrle, S. A. Tarasenko, D. Schuh, Ch. Gerl, W. Wegscheider, W. Prettl, and S. D. Ganichev, Pis’ma Zh. Éksp. Teor. Fiz. 84(10), 666 (2006) [JETP Lett. 84 (10), 570 (2006)].Google Scholar
  15. 15.
    D. V. Zavyalov, S. V. Kryuchkov, and E. S. Sivashova, Pis’ma Zh. Tekh. Fiz. 32(4), 11 (2006) [Tech. Phys. Lett. 32 (2), 143 (2006)].Google Scholar
  16. 16.
    D. V. Zav’yalov, S. V. Kryuchkov, and E. I. Kukhar’, Fiz. Tekh. Poluprovodn. (St. Petersburg) 41(6), 726 (2007) [Semiconductors 41 (6), 704 (6), (2007)].Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2008

Authors and Affiliations

  • S. V. Kryuchkov
    • 1
    Email author
  • E. I. Kukhar’
    • 1
  • E. S. Sivashova
    • 1
  1. 1.Volgograd State Pedagogical UniversityVolgogradRussia

Personalised recommendations