Skip to main content
Log in

Prediction of optimum catalysts and cocatalysts for chemical growth of carbon nanotubes

  • Fullerenes and Atomic Clusters
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

A practically important problem of growth of different kinds of carbon nanotubes from nanodrops of a metal catalyst oversaturated by carbon is solved by finding cocatalysts that provide a minimum nucleation energy for the critical nucleus of a nanotube. For pure catalysts, it turns out that the optimum is achieved using atoms of well-known elements of the iron group, which have a minimum energy of the van-der-Waals interaction with graphene islands and a certain energy E Me-C of the interaction with a carbon atom. It is also possible to obtain even more effective catalysts by finding an appropriate ratio of the components by the trial and error method. In particular, the experimentally found combinations nickel-yttrium and cobalt-molybdenum are among the most effective ones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. I. Alekseev, Zh. Tekh. Fiz. 74(8), 45 (2004) [Tech. Phys. 49 (8), 998 (2004)].

    Google Scholar 

  2. N. I. Alekseev, Fiz. Tverd. Tela (St. Petersburg) 48(8), 1518 (2006) [Phys. Solid State 48 (8), 1605 (2006)].

    Google Scholar 

  3. N. I. Alekseev, Fiz. Tverd. Tela (St. Petersburg) 48(8), 1527 (2006) [Phys. Solid State 48 (8), 1616 (2006)].

    Google Scholar 

  4. S. Sato, A. Kawabata, D. Kondo, M. Nihei, and Y. Awano, Chem. Phys. Lett. 402, 149 (2005).

    Article  ADS  Google Scholar 

  5. A. Okamoto and H. Shinohara, Carbon 43, 431 (2005).

    Article  Google Scholar 

  6. S. Seraphin, D. Zhou, J. Jiao, M. A. Minke, S. W. T. Yadav, and J. C. Withers, Chem. Phys. Lett. 217, 191 (1994).

    Article  ADS  Google Scholar 

  7. C. J. Lee, J. Park, J. M. Kim, Y. Huh, J. Y. Lee, and K. S. No, Chem. Phys. Lett. 327, 277 (2000).

    Article  ADS  Google Scholar 

  8. A. V. Krestinin, M. B. Kislov, and A. G. Ryabenko, J. Nanosci. Nanotechnol. 4, 390 (2004).

    Article  Google Scholar 

  9. E. I. Givargizov, Growth of Filamentary and Scaly Crystals from the Vapor (Nauka, Moscow, 1977) [in Russian].

    Google Scholar 

  10. G. O. Tibbets, J. Cryst. Growth 66, 632 (1984).

    Article  ADS  Google Scholar 

  11. A. Thess, R. Lee, P. Nicolaev, H. Dai, P. Petit, J. Robert, C. Xu, Y. H. Lee, S. G. Kim, A. G. Rinzler, D. T. Colbert, G. E. Scuseria, D. Tomanek, J. Fischer, and R. E. Smalley, Science (Washington) 273, 483 (1996).

    Article  ADS  Google Scholar 

  12. C. D. Scott, S. Arepalli, P. Nicolaev, and R. E. Smalley, Appl. Phys. A: Mater. Sci. Process. 72, 573 (2001).

    ADS  Google Scholar 

  13. A. V. Krestinin, Ross. Khim. Zh. XLVIII, 21 (2004).

    Google Scholar 

  14. V. V. Kovalevski and A. N. Safronov, Carbon 36, 963 (1998).

    Article  Google Scholar 

  15. R. A. Buyanov, Carburization of Catalysts (Nauka, Novosibirsk, 1983) [in Russian].

    Google Scholar 

  16. S. Amelinkx, X. B. Zhang, D. Bernaertz, X. F. Zhang, V. Ivanov, and J. B. Nagy, Science (Washington) 265, 635 (1994).

    Article  ADS  Google Scholar 

  17. N. I. Alekseev, N. A. Charykov, and E. V. Kustova, Fiz. Tverd. Tela (St. Petersburg) 50 [Phys. Solid State 50 (in press)].

  18. J. A. Pople, Usp. Fiz. Nauk 172, 349 (2002) [Nobel Lecture, 1998 (The Nobel Foundation, Stockholm, 1999)].

    Article  Google Scholar 

  19. É. G. Rakov, Ross. Khim. Zh. XLVIII, 12 (2004).

    Google Scholar 

  20. N. I. Alekseev and G. A. Dyuzhev, Zh. Tekh. Fiz. 75(11), 112 (2005) [Tech. Phys. 50 (11), 1504 (2005)].

    Google Scholar 

  21. N. I. Alekseev and G. A. Dyuzhev, Zh. Tekh. Fiz. 71(5), 71 (2001) [Tech. Phys. 46 (5), 577 (2001)].

    Google Scholar 

  22. N. I. Alekseev and B. M. Filippov, Fiz. Tverd. Tela (St. Petersburg) 50 (in press) [Phys. Solid State 50 (in press)].

  23. Y. Saito, M. Okuda, N. Fujimoto, T. Yoshikawa, M. Tomita, and T. Hayashi, Jpn. J. Appl. Phys. 33, L526 (1994).

    Article  ADS  Google Scholar 

  24. P. J. F. Harris, Carbon Nanotubes and Related Structures: New Materials for the Twenty-First Century (Cambridge University Press, Cambridge, 2002; Tekhnosfera, Moscow, 2003).

    Google Scholar 

  25. P. J. E. Harris, S. C. Tsang, J. B. Claridge, and M. L. Green, J. Chem. Soc., Faraday Trans. 90, 2799 (1994).

    Article  Google Scholar 

  26. N. I. Alekseev and G. A. Dyuzhev, Zh. Tekh. Fiz. 72(5), 121 (2002) [Tech. Phys. 47 (5), 643 (2002)].

    Google Scholar 

  27. N. I. Alekseev, Zh. Tekh. Fiz. 74(8), 51 (2004) [Tech. Phys. 49 (8), 1004 (2004)].

    Google Scholar 

  28. D. W. Brenner, Phys. Rev. B: Condens. Matter 42, 9458 (1990).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. I. Alekseev.

Additional information

Original Russian Text © N.I. Alekseev, D.V. Afanas’ev, N.A. Charykov, 2008, published in Fizika Tverdogo Tela, 2008, Vol. 50, No. 5, pp. 945–953.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alekseev, N.I., Afanas’ev, D.V. & Charykov, N.A. Prediction of optimum catalysts and cocatalysts for chemical growth of carbon nanotubes. Phys. Solid State 50, 986–995 (2008). https://doi.org/10.1134/S1063783408050314

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783408050314

PACS numbers

Navigation