Skip to main content
Log in

Atomic displacements and short-range order in the FeSi soft magnetic alloy: Experiment and ab initio calculations

  • Magnetism and Ferroelectricity
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

In order to determine the mechanism responsible for the formation of short-range order in dilute FeSi solid solutions, the chemical bonding, atomic displacements near the metalloid, and the enthalpy of silicon dissolution in iron have been studied within density functional theory. It is found that the directed character of the Si-Fe chemical bond formed upon the p-d hybridization brings about an anisotropy in atomic displacements near silicon atoms. Calculations of the Si-Si effective pairwise interaction energy offer an explanation for the observed features in short-range order in FeSi and suggest that ferromagnetic bcc Fe does not have a tendency toward Si atom clusterization. The mechanism of formation of the anisotropy induced by application of an external load or a magnetic field is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Yoshizawa, S. Oguma, and K. Yamauchi, J. Appl. Phys. 64, 6044 (1988).

    Article  ADS  Google Scholar 

  2. G. Herzer, J. Magn. Magn. Mater. 112, 258 (1992).

    Article  ADS  Google Scholar 

  3. B. Hofman and H. Kronmüller, J. Magn. Magn. Mater. 152, 91 (1996).

    Article  ADS  Google Scholar 

  4. H. Kronmüller, Phys. Status Solidi B 118, 661 (1983).

    Article  Google Scholar 

  5. K. Forsch, Phys. Status Solidi 42, 329 (1970).

    Article  Google Scholar 

  6. R. M. Bozorth, Ferromagnetism (Van Nostrand, Princeton, NJ, 1951; Inostrannaya Literatura, Moscow, 1956).

    Google Scholar 

  7. H. Fukunaga, N. Furukawa, H. Tanaka, and M. Nakano, J. Appl. Phys. 87, 7103 (2000).

    Article  ADS  Google Scholar 

  8. Y. Ustinovshikov and I. Sapegina, J. Mater. Sci. 39, 1007 (2004).

    Article  ADS  Google Scholar 

  9. K. Hilfrich, W. Kölker, W. Petry, O. Schärpf, and E. Nembach, Scr. Metall. Mater. 24, 39 (1990).

    Article  Google Scholar 

  10. K. Hilfrich, W. Kölker, W. Petry, O. Schärpf, and E. Nembach, Acta Metall. Mater. 42, 743 (1994).

    Article  Google Scholar 

  11. D. Ruiza, T. Ros-Yanez, L. Vandenbossche, L. Dupre, R. E. Vandenberghe, and Y. Houbaer, J. Magn. Magn. Mater. 290–291, 1423 (2005).

    Article  Google Scholar 

  12. Yu. P. Chernenkov, V. I. Fedorov, V. A. Lukshina, B. K. Sokolov, and N. V. Ershov, Fiz. Met. Metalloved. 92(2), 95 (2001) [Phys. Met. Metallogr. 92 (2), 193 (2001)].

    Google Scholar 

  13. Yu. P. Chernenkov, V. I. Fedorov, V. A. Lukshina, B. K. Sokolov, and N. V. Ershov, J. Magn. Magn. Mater. 254–255, 346 (2003).

    Article  Google Scholar 

  14. N. V. Ershov, V. A. Lukshina, B. K. Sokolov, Yu. P. Chernenkov, and V. I. Fedorov, Physica B (Amsterdam) 372, 152 (2006).

    ADS  Google Scholar 

  15. M. L. Neél, J. Phys. Radiat. 15, 225 (1954).

    Article  MATH  Google Scholar 

  16. S. Taniguchi and M. Yamamoto, Sci. Rep. Res. Inst., Tohoku Univ., Ser. A 6, 330 (1954); S. Taniguchi, Sci. Rep. Res. Inst., Tohoku Univ., Ser. A 7, 269 (1955).

    Google Scholar 

  17. S. Chikizumi and C. D. Graham, in Magnetism and Metallurgy, Ed. by A. Berkowitz and E. Kneller (Academic, New York, 1969), Vol. 2, p. 577.

    Google Scholar 

  18. A. S. Nowick and B. S. Berry, Inelastic Relaxation in Crystalline Solids (Academic, New York, 1972; Atomizdat, Moscow, 1975).

    Google Scholar 

  19. J. Kudrnovsky, N. E. Christensen, and O. K. Andersen, Phys. Rev. B: Condens. Matter 43, 5924 (1991).

    ADS  Google Scholar 

  20. E. G. Moroni, W. Wolf, J. Hafner, and R. Podloucky, Phys. Rev. B: Condens. Matter 59, 12860 (1999).

    ADS  Google Scholar 

  21. N. I. Kulikov, D. Fristot, J. Hugel, and A. V. Postnikov, Phys. Rev. B: Condens. Matter 66, 014206 (2002).

    Google Scholar 

  22. A. K. Arzhnikov and L. V. Dobysheva, Phys. Rev. B: Condens. Matter 62, 5324 (2000).

    ADS  Google Scholar 

  23. N. V. Ershov, A. K. Arzhnikov, L. V. Dobysheva, Yu. P. Chernenkov, V. I. Fedorov, and V. A. Lukshina, Fiz. Tverd. Tela (St. Petersburg) 49(1), 64 (2007) [Phys. Solid State 49 (1), 67 (2007)].

    Google Scholar 

  24. Yu. P. Chernenkov, V. I. Fedorov, V. A. Lukshina, B. K. Sokolov, and N. V. Ershov, Fiz. Met. Metalloved. 100(3), 39 (2005) [Phys. Met. Metallogr. 100 (3), 235 (2005)].

    Google Scholar 

  25. O. Kubaschevski, Iron Binary Phase Diagrams (Springer, Berlin, 1982).

    Google Scholar 

  26. B. E. Warren, X-Ray Diffraction (Addison-Wesley, New York, 1969).

    Google Scholar 

  27. D. G. Pettifor, Acta Mater. 51, 5649 (2003).

    Article  Google Scholar 

  28. S. Barony, A. Dal Corso, S. de Gironcoli, P. Giannozzi, C. Cavazzoni, G. Balabbio, S. Scandolo, G. Chiarotti, P. Focher, A. Pasquarello, K. Laasonen, F. Trave, R. Marzari, and A. Kokalj, http://www.pwscf.org/.

  29. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).

    Article  ADS  Google Scholar 

  30. D. Vanderbilt, Phys. Rev. B: Condens. Matter 41, 7892 (1990).

    ADS  Google Scholar 

  31. A. M. Rappe, K. M. Rabe, E. Kaxiras, and J. D. Joannopoulus, Phys. Rev. B: Condens. Matter 41, 1227 (1990).

    ADS  Google Scholar 

  32. M. Acet, H. Zähres, and E. F. Wassermann, Phys. Rev. B: Condens. Matter 49, 6012 (1994).

    ADS  Google Scholar 

  33. H. von Känel, K. A. Mäder, E. Müller, N. Onda, and H. Sirringhaus, Phys. Rev. B: Condens. Matter 45, 807 (1992); H. von Känel, M. Mendrik, K. A. Mäder, N. Onda, S. Goncalves-Conto, C. Schwarz, G. Malegori, L. Miglio, and F. Marabelli, Phys. Rev. B: Condens. Matter 50, 3570 (1994); H. von Känel, E. Müller, S. Goncalves-Conto, C. Schwarz, and N. Onda, Appl. Surf. Sci. 104/105, 204 (1996).

    Google Scholar 

  34. P. Villars and L. D. Calvert, Pearson’s Handbook of Crystallographic Data for Intermetallic Phases (American Society for Metals, Materials Park, OH, 1985).

    Google Scholar 

  35. F. R. de Boer, R. Boom, W. C. M. Mattens, A. R. Miedema, and A. K. Niessen, in Cohesion in Metals, Ed. by F. R. de Boer and D. G. Pettifor (North-Holland, Amsterdam, 1988), Vol. 1, p. 52.

    Google Scholar 

  36. D. de Fontain, Solid State Phys. 47, 33 (1994); J. M. Sanchez, F. Ducastelle, and D. Gratias, Physica A (Amsterdam) 128, 334 (1984); A. van de Walle and M. Asta, in Handbook of Materials Modeling: Methods and Models, Ed. by S. Yip (Springer, Dordrecht, The Netherlands, 2005), p. 1.

    Article  Google Scholar 

  37. A. G. Khachaturyan, Theory of Structural Transformations in Solids (Nauka, Moscow, 1974; Wiley, New York, 1983).

    Google Scholar 

  38. Th. Proffen and R. B. Neder, J. Appl. Cryst. 30, 171 (1997).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. R. Kuznetsov.

Additional information

Original Russian Text © A.R. Kuznetsov, Yu.N. Gornostyrev, N.V. Ershov, V.A. Lukshina, Yu.P. Chernenkov, V.I. Fedorov, 2007, published in Fizika Tverdogo Tela, 2007, Vol. 49, No. 12, pp. 2184–2191.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuznetsov, A.R., Gornostyrev, Y.N., Ershov, N.V. et al. Atomic displacements and short-range order in the FeSi soft magnetic alloy: Experiment and ab initio calculations. Phys. Solid State 49, 2290–2297 (2007). https://doi.org/10.1134/S1063783407120128

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783407120128

PACS numbers

Navigation