Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Magnetic and electrical properties of the ZnGeAs2: Mn chalcopyrite

  • 87 Accesses

  • 23 Citations


Doping of the ZnGeAs2 semiconductor with manganese has produced compositions with spontaneous magnetization and high Curie temperatures of up to 367 K for the composition 3.5 wt% Mn. Their magnetic properties are characteristic of spin glasses at temperatures T < T S and magnetic fields H < 11 kOe. In stronger fields, the spin glass state transforms into a phase with a spontaneous magnetization 4–5 times weaker than that to be expected under ferromagnetic ordering of all Mn ions. This is obviously a singly-connected ferromagnetic phase containing regions with frustrated bonds. The frustrated regions and the spin glass phase have inclusions of noninteracting ferromagnetic clusters, because these regions and the spin glass phase at low temperatures exhibit a strong increase in the magnetization M, with the dependence M(T) being described by the Langevin function. Measurements of the electrical resistivity ρ and the Hall effect have revealed that, for T < 30 K, the resistivity ρ of compositions with 1.5 and 3.5 wt % Mn is higher that at 30 K, which makes superexchange dominant and gives rise to the onset of the spin glass state. The nonuniform distribution of Mn ions in the spin glass phase accounts for the existence of isolated ferromagnetic clusters, their ferromagnetism being generated by carrier-mediated exchange. As the temperature increases still more, the increase in the mobility occurs faster than the decrease in the concentration, thus promoting an enhancement of the carrier-mediated exchange and growth of the ferromagnetic clusters in size, which at T = T S come in contact. This signifies a transition from a multiply-to a singly-connected ferromagnetic phase, which contains microregions with frustrated bonds.

This is a preview of subscription content, log in to check access.


  1. 1.

    H. Ohno, Science (Washington) 281, 951 (1998).

  2. 2.

    G. A. Prinz, Science (Washington) 282, 1660 (1998).

  3. 3.

    F. Matsukura, H. Ohno, A. Shen, and Y. Sugawara, Phys. Rev. B: Condens. Matter 57, R2037 (1998).

  4. 4.

    K. M. Edmonds, K. Y. Wang, R. P. Campion, A. C. Neumann, N. R. S. Farley, B. L. Gallagher, and C. T. Foxon, Appl. Phys. Lett. 81, 4991 (2002).

  5. 5.

    K. M. Edmonds, P. Boguslawski, K. Y. Wang, R. P. Campion, S. N. Novikov, N. R. S. Farley, B. L. Gallagher, C. T. Foxon, M. Sawicki, T. Dietl, M. Buongiorno Nardelli, and J. Bernholc, Phys. Rev. Lett. 92, 03720 (2004).

  6. 6.

    G. A. Medvedkin, T. Ishibashi, T. Nishi, K. Hayata, Y. Hasegawa, and K. Sato, Jpn. J. Appl. Phys. 39, L949 (2000).

  7. 7.

    G. A. Medvedkin, K. Hirose, T. Ishibashi, T. Nishi, V. G. Voevodin, and K. Sato, J. Cryst. Growth 236, 609 (2002).

  8. 8.

    S. Choi, G.-B. Cha, S. C. Hong, S. Cho, Y. Kim, J. B. Ketterson, S.-Y. Jeong, and G.-C. Yi, Solid State Commun. 122, 165 (2002).

  9. 9.

    R. V. Demin, L. I. Koroleva, S. F. Marenkin, S. G. Mikhaĭlov, V. M. Novotortsev, V. T. Kalinnikov, T. G. Aminov, R. Szymczak, H. Szymczak, and M. Baran, Pis’ma Zh. Tekh. Fiz. 30(21), 81 (2004) [Tech. Phys. Lett. 30 (11), 924 (2004)].

  10. 10.

    P. R. Kent and T. C. Schulthess, in Proceedings of the 27th International Conference on Physics of Semiconductors (ICPS-27), Flagstaff, AZ, 2005, Ed. by J. Menendez and Ch. G. van de Walle (Flagstaff, 2005), p. 1369.

  11. 11.

    H. Akai, Phys. Rev. Lett. 81, 3002 (1998).

  12. 12.

    H. Akai, T. Kamatani, and S. Watanabe, J. Phys. Soc. Jpn. 69(Suppl. A), 112 (2000).

  13. 13.

    P. Mahadevan and A. Zunger, Phys. Rev. Lett. 88, 047205 (2002).

  14. 14.

    Y.-J. Zhao, W. T. Geng, A. J. Freeman, and T. Oguchi, Phys. Rev. B: Condens. Matter 63, R201 202 (2001).

Download references

Author information

Correspondence to L. I. Koroleva.

Additional information

Original Russian Text © L.I. Koroleva, V.Yu. Pavlov, D.M. Zashchirinskiĭ, S.F. Marenkin, S.A. Varnavskiĭ, R. Szymczak, V. Dobrovol’skiĭ, L. Killinskiĭ, 2007, published in Fizika Tverdogo Tela, 2007, Vol. 49, No. 11, pp. 2022–2026.

An erratum to this article is available at http://dx.doi.org/10.1134/S1063783414120361.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Koroleva, L.I., Pavlov, V.Y., Zashchirinskiĭ, D.M. et al. Magnetic and electrical properties of the ZnGeAs2: Mn chalcopyrite. Phys. Solid State 49, 2121–2125 (2007). https://doi.org/10.1134/S1063783407110170

Download citation

PACS numbers

  • 75.50.Pp
  • 75.50.Lk
  • 72.25.-b