Skip to main content
Log in

Mechanism of deformation-twin formation in nanocrystalline metals

  • Defects and Impurity Centers, Dislocations, and Physics of Strength
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

A theoretical model is proposed to describe the nucleation of deformation twins at grain boundaries in nanocrystalline materials under the action of an applied stress and the stress field of a dipole of junction or grain-boundary wedge disclinations. The model is used to consider pure nanocrystalline aluminum and copper with an average grain size of about 30 nm. The conditions of barrier-free twinning-dislocation nucleation are studied. These conditions are shown to be realistic for the metals under study. As the twin-plate thickness increases, one observes two stages of local hardening and an intermediate stage of local flow of a nanocrystalline metal on the scale of one nanograin. In all stages, the critical stress increases with decreasing disclination-dipole strength. The equilibrium thickness and shape of the twin plate are analyzed and found to agree well with the well-known results of experimental observations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Z. Valiev and I. V. Aleksandrov, Nanostructured Materials Prepared under Severe Plastic Deformation (Logos, Moscow, 2000) [in Russian].

    Google Scholar 

  2. A. I. Gusev and A. A. Rempel, Nanocrystalline Materials (Fizmatlit, Moscow, 2000; Cambridge International Science, Cambridge, 2004).

    Google Scholar 

  3. K. A. Padmanabhan, Mater. Sci. Eng., A 304–306, 200 (2000).

    Google Scholar 

  4. M. Yu. Gutkin and I. A. Ovid’ko, Physical Mechanics of Deformed Nanostructures, Vol. 1: Nanocrystalline Materials (Yanus, St. Petersburg, 2003) [in Russian].

    Google Scholar 

  5. V. A. Pozdnyakov and A. M. Glezer, Fiz. Tverd. Tela (St. Petersburg) 47(5), 793 (2005) [Phys. Solid State 47 (5), 817 (2005)].

    Google Scholar 

  6. B. I. Smirnov, V. V. Shpeĭzman, and V. I. Nikolaev, Fiz. Tverd. Tela (St. Petersburg) 47(5), 816 (2005) [Phys. Solid State 47 (5), 840 (2005)].

    Google Scholar 

  7. B. Q. Han, E. Lavernia, and F. A. Mohamed, Rev. Adv. Mater. Sci. 9, 1 (2005).

    Article  Google Scholar 

  8. I. A. Ovid’ko, Rev. Adv. Mater. Sci. 10, 89 (2005).

    Google Scholar 

  9. D. Wolf, V. Yamakov, S. R. Phillpot, A. K. Mukherjee, and H. Gleiter, Acta Mater. 53, 1 (2005).

    Article  Google Scholar 

  10. M. W. Chen, E. Ma, K. J. Hemker, H. W. Sheng, Y. M. Wang, and X. M. Cheng, Science (Washington) 300, 1275 (2003).

    Article  ADS  Google Scholar 

  11. X. Z. Liao, F. Zhou, E. J. Lavernia, S. G. Srinivasan, M. I. Baskes, D. W. He, and Y. T. Zhu, Appl. Phys. Lett. 83, 632 (2003).

    Article  ADS  Google Scholar 

  12. X. Z. Liao, F. Zhou, E. J. Lavernia, D. W. He, and Y. T. Zhu, Appl. Phys. Lett. 83, 5062 (2003).

    Article  ADS  Google Scholar 

  13. Y. T. Zhu, X. Z. Liao, S. G. Srinivasan, and E. J. Lavernia, Appl. Phys. Lett. 98, 0343191 (2005).

    Google Scholar 

  14. X. Z. Liao, F. Zhou, S. G. Srinivasan, Y. T. Zhu, R. Z. Valiev, and D. V. Gunderov, Appl. Phys. Lett. 84, 592 (2004).

    Article  ADS  Google Scholar 

  15. G. B. Olson and M. Cohen, Metall. Trans. A 7, 1897 (1976).

    Google Scholar 

  16. J. P. Hirth and J. Lothe, Theory of Dislocations (McGraw-Hill, New York, 1968; Atomizdat, Moscow, 1972).

    Google Scholar 

  17. V. V. Rybin, Severe Plastic Deformations and Fracture of Metals (Metallurgiya, Moscow, 1986) [in Russian].

    Google Scholar 

  18. V. I. Vladimirov and A. E. Romanov, Disclinations in Crystals (Nauka, Leningrad, 1986) [in Russian].

    Google Scholar 

  19. M. Murayama, J. M. Howe, H. Hidaka, and S. Takaki, Science (Washington) 295, 2433 (2002).

    Article  ADS  Google Scholar 

  20. M. Yu. Gutkin, I. A. Ovid’ko, and N. V. Skiba, Fiz. Tverd. Tela (St. Petersburg) 46(11), 1975 (2004) [Phys. Solid State 46 (11), 2042 (2004)].

    Google Scholar 

  21. S. V. Bobylev, M. Yu. Gutkin, and I. A. Ovid’ko, Acta Mater. 52, 3793 (2004).

    Article  Google Scholar 

  22. M. Yu. Gutkin, I. A. Ovid’ko, and N. V. Skiba, J. Phys. D: Appl. Phys. 38, 3921 (2005).

    Article  ADS  Google Scholar 

  23. S. V. Bobylev, M. Yu. Gutkin, and I. A. Ovid’ko, Phys. Rev. B: Condens. Matter 73, 064102 (2006).

    Google Scholar 

  24. R. J. Asaro and S. Suresh, Acta Mater. 53, 3369 (2005).

    Article  Google Scholar 

  25. K. N. Mikaelyan, M. Seefeldt, M. Yu. Gutkin, P. Klimanek, and A. E. Romanov, Fiz. Tverd. Tela (St. Petersburg) 45(11), 2002 (2003) [Phys. Solid State 45 (11), 2104 (2003)].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © M.Yu. Gutkin, I.A. Ovid’ko, N.V. Skiba, 2007, published in Fizika Tverdogo Tela, 2007, Vol. 49, No. 5, pp. 830–838.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gutkin, M.Y., Ovid’ko, I.A. & Skiba, N.V. Mechanism of deformation-twin formation in nanocrystalline metals. Phys. Solid State 49, 874–882 (2007). https://doi.org/10.1134/S1063783407050125

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783407050125

PACS numbers

Navigation