Skip to main content
Log in

Quantum-chemical calculations of the piezoelectric characteristics of boron nitride and carbon nanotubes

  • Fullerenes and Atomic Clusters
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The piezoelectric characteristics of boron-nitride and carbon nanotubes were calculated. The electronic structure of nanotubes was studied using the quantum-chemical semiempirical MNDO method within a molecular-cluster model. The piezoelectric constants e zzz, e xzz, and e xxx of boron nitride nanotubes of two structural modifications (n, n) (n = 5, 6, ..., 9) and (n, 0) (n = 6, 7, ..., 12) were calculated. The values of the piezoelectric constants e zzz of tubular boron nitride are found to be close in order of magnitude to the respective values obtained using nonempirical calculation methods. The piezoelectric constant e xzz of a (6, 6) carbon nanotube doped with substitutional point defects was calculated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. A. Strukov and A. P. Levanyuk, Ferroelectric Phenomena in Crystals: Physical Foundations (Nauka, Moscow, 1983; Springer, Berlin, 1998).

    Google Scholar 

  2. W. Harrison, Electronic Structure and Properties of Solids (Freeman, San Francisco, 1980; Mir, Moscow, 1983), Vol. 1.

    Google Scholar 

  3. N. G. Lebedev and M. B. Belonenko, Vestn. Volgogr. Gos. Univ. 2, 79 (1997).

    Google Scholar 

  4. M. B. Belonenko, N. G. Lebedev, and V. V. Nemesh, Khim. Fiz. 17, 131 (1998).

    Google Scholar 

  5. M. B. Belonenko, N. G. Lebedev, and V. V. Nemesh, Zh. Strukt. Khim. 41, 468 (2000).

    Google Scholar 

  6. A. A. Levin, S. P. Dolin, V. L. Lebedev, and T. Yu. Mikhaĭlova, Khim. Fiz. 19, 78 (2000).

    Google Scholar 

  7. R. Saito, M. S. Dresselhaus, and G. Dresselhaus, Physical Properties of Carbon Nanotubes (Imperial College Press, London, 1999).

    Google Scholar 

  8. A. L. Ivanovskiĭ and G. P. Shveĭkin, Quantum Chemistry in Materials Science: Boron, Its Compounds and Alloys (Ural Division of the Russian Academy of Sciences, Yekaterinburg, 1997) [in Russian].

    Google Scholar 

  9. P. Harris, Carbon Nanotubes and Related Structures: New Materials for the Twenty-First Century (Cambridge University Press, Cambridge, 1999; Tekhnosfera, Moscow, 2003).

    Google Scholar 

  10. R. H. Baughman, C. Cui, A. A. Zakhidov, Z. Iqbal, J. N. Barisci, G. M. Spinks, G. G. Wallace, A. Mazzoldi, D. de Rossi, A. G. Rinzler, O. Jaschinski, S. Roth, and M. Kertesz, Science (Washington) 284, 1340 (1999).

    Article  ADS  Google Scholar 

  11. B. Vigolo, A. Pénicaud, C. Coulon, C. Sauder, R. Pailler, C. Journet, P. Bernier, and Ph. Poulin, Science (Washington) 290, 1331 (2000).

    Article  ADS  Google Scholar 

  12. R. H. Baughman, Science (Washington) 290, 1310 (2000).

    Article  Google Scholar 

  13. R. H. Baughman, A. A. Zakhidov, and W. A. de Heer, Science (Washington) 297, 787 (2002).

    Article  ADS  Google Scholar 

  14. T. P. Zhirina and N. G. Lebedev, Abstracts of Papers of the All-Russia Young Fellows’ Conference on Semiconductor Physics and Semiconductor Opto-and Nanoelectronics, St. Petersburg, Russia, 1999 (St. Petersburg, 1999), p. 142 [in Russian].

  15. N. G. Lebedev, I. V. Zaporotskova, and L. A. Chernozatonskiĭ, Abstracts of Invited Lectures and Contributed Papers “Fullerenes and Atomic Clusters,” St. Petersburg, Russia, 2001 (St. Petersburg, 2001), p. 324.

  16. E. J. Mele and P. Kral, Phys. Rev. Lett. 88, 056803 (2002).

    Google Scholar 

  17. S. M. Nakhmanson, A. Calzolari, V. Meunier, J. Bernhole, and M. B. Nardelli, Phys. Rev. B: Condens. Matter 67, 235406 (2003).

    Google Scholar 

  18. N. Sai and E. J. Mele, Phys. Rev. B: Condens. Matter. 68, 241 405 (2003).

    Google Scholar 

  19. P. J. Michalski, N. Sai, and E. J. Mele, Phys. Rev. Lett. 95, 116803 (2005).

    Google Scholar 

  20. R. A. Évarestov, Quantum-Chemical Methods in the Theory of Solids (Leningrad State University, Leningrad, 1982) [in Russian].

    Google Scholar 

  21. M. J. S. Dewar and W. Thiel, J. Am. Chem. Soc. 99, 4899 (1977).

    Article  Google Scholar 

  22. N. F. Stepanov, Quantum Mechanics and Quantum Chemistry (Mir, Moscow, 2001) [in Russian].

    Google Scholar 

  23. P. V. Pavlov and A. F. Khokhlov, Solid-State Physics (Vysshaya Shkola, Moscow, 2000) [in Russian].

    Google Scholar 

  24. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 7: Theory of Elasticity (Nauka, Moscow, 1987; Pergamon, Oxford, 1987).

    Google Scholar 

  25. M. P. Shaskol’skaya, Crystallography (Vysshaya Shkola, Moscow, 1976) [in Russian].

    Google Scholar 

  26. I. S. Zheludev, Symmetry and Its Applications (Atomizdat, Moscow, 1976) [in Russian].

    Google Scholar 

  27. L. P. Khoroshun, B. P. Maslov, and P. V. Leshchenko, Predicting the Effective Properties of Piezoactive Composite Materials (Naukova Dumka, Kiev, 1989) [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © N.G. Lebedev, L.A. Chernozatonskiĭ, 2006, published in Fizika Tverdogo Tela, 2006, Vol. 48, No. 10, pp. 1909–1915.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lebedev, N.G., Chernozatonskiĭ, L.A. Quantum-chemical calculations of the piezoelectric characteristics of boron nitride and carbon nanotubes. Phys. Solid State 48, 2028–2034 (2006). https://doi.org/10.1134/S1063783406100349

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783406100349

PACS numbers

Navigation