Skip to main content
Log in

Enhancement of the photoluminescence intensity of a single InAs/GaAs quantum dot by separate generation of electrons and holes

  • Low-Dimensional Systems and Surface Physics
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

It is demonstrated that the microphotoluminescence (μPL) spectrum of a single InAs/GaAs self-assembled quantum dot (QD) undergoes considerable changes when the primary laser excitation is complemented with an additional infrared laser. The primary laser, tuned slightly below the GaAs band gap, provides electron-hole pairs in the wetting layer (WL), as well as excess free electrons from ionized shallow acceptors in the GaAs barriers. An additional IR laser with a fixed energy well below the QD ground state transition generates excess free holes from deep levels in GaAs. The excess electron and hole will experience diffusion separately, due to the time separation between the two events of their generation, to eventually become captured into the QD. Although the generation rates of excess carries are much lower than that of the electron-hole pair generation in the WL, they considerably influence the QD emission at low temperatures. The integrated PL intensity increases by several times as compared to single-laser excitation, and the QD exciton spectrum is redistributed in favor of a more neutral charge configuration. The dependence of the observed phenomenon on the powers of the two lasers and the temperature has been studied and is consistent with the model proposed. The concept of dual excitation could be successfully applied to different low-dimensional semiconductor structures in order to manipulate their charge state and emission intensity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Raymond, K. Hinzer, S. Fafard, and J. L. Merz, Phys. Rev. B: Condens. Matter 61, R16 331 (2000).

    Google Scholar 

  2. U. Jahn, R. Nötzel, J. Ringling, H.-P. Schönherr, H. T. Grahn, K. H. Ploog, and E. Runge, Phys. Rev. B: Condens. Matter 60, 11 038 (1999).

    Google Scholar 

  3. S. Marcinkevičius and R. Leon, Appl. Phys. Lett. 76, 2406 (2000).

    Article  ADS  Google Scholar 

  4. M. Grundmann and D. Bimberg, Phys. Status Solidi A 164, 297 (1997).

    Article  ADS  Google Scholar 

  5. D. A. Mazurenko, A. V. Scherbakov, A. V. Akimov, A. J. Kent, and M. Henini, Semicond. Sci. Technol. 14, 1132 (1999).

    Article  ADS  Google Scholar 

  6. A. V. Akimov and V. G. Shofman, J. Lumin. 53, 335 (1992).

    Article  Google Scholar 

  7. M. Lomascolo, A. Vergine, T. K. Johal, E. Rimaldi, A. Passarelo, R. Cingolani, S. Patanè, M. Labardi, M. Allegrini, F. Troiani, and E. Molinari, Phys. Rev. B: Condens. Matter 66, 041 302 (2002).

    Google Scholar 

  8. J. J. Finley, A. D. Ashmore, A. Lemaître, D. J. Mowbray, M. S. Skolnik, I. E. Itskevich, P. A. Maksym, M. Hopkinson, and T. Krauss, Phys. Rev. B: Condens. Matter 63, 073 307 (2001).

    Google Scholar 

  9. E. S. Moskalenko, V. Donchev, K. F. Karlsson, P. O. Holtz, B. Monemar, W. V. Schoenfeld, J. M. Garcia, and P. M. Petroff, Phys. Rev. B: Condens. Matter 68, 155 317 (2003).

    Google Scholar 

  10. E. S. Moskalenko, K. F. Karlsson, P. O. Holtz, B. Monemar, W. V. Schoenfeld, J. M. Garcia, and P. M. Petroff, Phys. Rev. B: Condens. Matter 64, 085 302 (2001).

    Google Scholar 

  11. E. S. Moskalenko, K. F. Karlsson, P. O. Holtz, B. Monemar, W. V. Schoenfeld, J. M. Garcia, and P. M. Petroff, Phys. Rev. B: Condens. Matter 66(19), 195 332 (2002).

    Google Scholar 

  12. K. F. Karlsson, E. S. Moskalenko, P. O. Holtz, B. Monemar, W. V. Schoenfeld, J. M. Garcia, and P. M. Petroff, Appl Phys. Lett. 78(19), 2952 (2001).

    Article  ADS  Google Scholar 

  13. A. M. Wite, P. J. Dean, D. J. Ashen, G. B. Mullin, B. Webb, B. Day, and P. D. Greene, J. Phys. C: Solid State Phys. 6, L243 (1973).

    Article  ADS  Google Scholar 

  14. E. J. Johnson, J. Kafalas, R. W. Davis, and W. A. Dyes, Appl. Phys. Lett. 40(11), 993 (1982).

    Article  ADS  Google Scholar 

  15. S. Adachi, J. Appl. Phys. 66(12), 6030 (1989).

    Article  ADS  Google Scholar 

  16. P. Blood and J. J. Harris, J. Appl. Phys. 56(4), 993 (1984).

    Article  ADS  Google Scholar 

  17. M. Heiblum, E. E. Mendez, and L. Osterling, J. Vac. Sci. Technol., B: Microelectron. Process. Phenom. 2(2), 233 (1984); I. H. Goodridge, Properties of Gallium Arsenide (INSPEC, The Institution of Electrical Engineers, London, 1986).

    Article  Google Scholar 

  18. P. Silverberg, P. Omling, and L. Samuelson, Appl. Phys. Lett. 52(20), 1689 (1988).

    Article  ADS  Google Scholar 

  19. C. Lobo, R. Leon, S. Marcinkevičius, W. Yang, P. Sercel, X. Z. Liao, J. Zou, and D. J. H. Cockayne, Phys. Rev. B: Condens. Matter 60(24), 16 647 (1999).

    Google Scholar 

  20. K. Mukai and M. Sugawara, in Self-Assembled In GaAs/GaAs Quantum Dots: Semiconductors and Semimetals, Ed. by M. Sugawara (Academic, San Diego, 1999), Vol. 60, p. 183.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

The text was submitted by the authors in English.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Donchev, V., Moskalenko, E.S., Karlsson, K.F. et al. Enhancement of the photoluminescence intensity of a single InAs/GaAs quantum dot by separate generation of electrons and holes. Phys. Solid State 48, 1993–1999 (2006). https://doi.org/10.1134/S1063783406100295

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783406100295

PACS numbers

Navigation