Skip to main content
Log in

On the morphology of carbon nanotubes growing from catalyst particles: Formulation of the model

  • Fullerenes and Atomic Clusters
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

A model is constructed for the growth of nanotubes from metal catalyst particles supersaturated with carbon. An island of the graphene plane on the catalyst surface serves as a nucleus for the formation of nanotubes with different morphologies. The dependence of the type of nanotube nucleating from an island on the catalyst particle size and the minimum number of carbon-metal interaction parameters is determined. These parameters are calculated using the semiempirical quantum-chemical methods. The results of calculations in the framework of the proposed model are compared with the experimental data obtained for the simultaneous formation of nanotubes of several types.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. I. Givargizov, Growth of Filamentary and Platelike Crystals from the Vapor (Nauka, Moscow, 1977) [in Russian].

    Google Scholar 

  2. Z. F. Ren, Z. P. Huang, J. W. Xu, J. H. Wang, P. Bush, M. P. Siegal, and P. Provenco, Science (Washington) 282, 1105 (1998).

    Article  ADS  Google Scholar 

  3. S. L. Sung, S. H. Tsai, C. H. Tseng, F. K. Chiang, X. W. Liu, and H. C. Shih, Appl. Phys. Lett. 74, 197 (1999).

    Article  ADS  Google Scholar 

  4. P. Serp, M. Corrias, and P. Kalck, Appl. Catal., A 253(2), 337 (2003).

    Article  Google Scholar 

  5. G. O. Tibbets, J. Cryst. Growth 66, 632 (1984).

    Article  ADS  Google Scholar 

  6. H. Kanzow and A. Ding, Phys. Rev. B: Condens. Matter 60(15), 11180 (1999).

    Google Scholar 

  7. V. Jordain, H. Kanzow, M. Castignolles, A. Loiseau, and P. Bernier, Chem. Phys. Lett. 364, 27 (2002).

    Article  ADS  Google Scholar 

  8. N. I. Alekseev, Zh. Tekh. Fiz. 74(9), 63 (2004) [Tech. Phys. 49 (9), 1166 (2004)].

    Google Scholar 

  9. R. A. Buyanov, Carburization of Catalysts (Nauka, Novosibirsk, 1983) [in Russian].

    Google Scholar 

  10. J. L. Hutchison, N. A. Kiselev, E. P. Krinichnaya, A. V. Krestinin, R. O. Loutfy, A. P. Morawsky, V. E. Muradyan, E. D. Obraztsova, J. Sloan, S. V. Terekhov, and D. N. Zakharov, Carbon 39, 761 (2001).

    Article  Google Scholar 

  11. R. R. Basca, Ch. Laurett, A. Peigney, W. S. Basca, Th. Vaugien, and A. Rousset, Chem. Phys. Lett. 323, 566 (2000).

    Article  ADS  Google Scholar 

  12. T. Hiraoka, T. Kawakubo, J. Kimura, R. Taniguchi, A. Okamoto, T. Okazaki, T. Sugai, Y. Ozeki, M. Yoshikawa, and H. Shinohara, Chem. Phys. Lett. 382, 679 (2003).

    Article  ADS  Google Scholar 

  13. A. V. Eletskiĭ, Usp. Fiz. Nauk 172(4), 401 (2002) [Phys. Usp. 45 (4), 369 (2002)].

    Article  Google Scholar 

  14. P. E. Nolan, D. C. Lynch, and A. H. Cutler, Carbon 34(6), 817 (1996).

    Article  Google Scholar 

  15. V. V. Kovalevski and A. N. Safronov, Carbon 36, 963 (1998).

    Article  Google Scholar 

  16. N. I. Alekseev, Fiz. Tverd. Tela (St. Petersburg) 48(8), 1527 (2006) [Phys. Solid State 48 (8), 1616 (2006)].

    Google Scholar 

  17. S. Bando, S. Asaka, Y. Saito, A. M. Rao, L. Grigorian, E. Richter, and P. C. Eklund, Phys. Rev. Lett. 80(17), 3779 (1998).

    Article  ADS  Google Scholar 

  18. Y. Saito and Y. Tani, J. Phys. Chem. B 104, 2495 (2000).

    Article  Google Scholar 

  19. N. I. Alekseev and G. A. Dyuzhev, Zh. Tekh. Fiz. 71(5), 71 (2001) [Tech. Phys. 46 (5), 577 (2001)].

    Google Scholar 

  20. A. V. Krestinin, Ross. Khim. Zh. 48(5), 21 (2004).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © N.I. Alekseev, 2006, published in Fizika Tverdogo Tela, 2006, Vol. 48, No. 8, pp. 1518–1526.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alekseev, N.I. On the morphology of carbon nanotubes growing from catalyst particles: Formulation of the model. Phys. Solid State 48, 1605–1615 (2006). https://doi.org/10.1134/S1063783406080294

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783406080294

PACS numbers

Navigation