Skip to main content
Log in

Generation of glide split-dislocation half-loops by grain boundaries in nanocrystalline Al

  • Defects, Dislocations, and Physics of Strength
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

A three-dimensional model for the generation of split dislocations by grain boundaries in nanocrystalline A1 is proposed. In terms of this model, rectangular glide split-dislocation half-loops nucleate at glide lattice dislocation loops pressed to grain boundaries by an applied stress. The level of the applied stress and the grain size at which the emission of such dislocation half-loops becomes energetically favorable are determined. The dependences of the stacking-fault width on the grain size and the applied stress are found. The anomalously wide stacking faults experimentally detected in nanocrystalline A1 are shown to be caused by high internal stresses forming in the stages of preparation, treatment, or local loading of nanocrystalline samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Z. Valiev, I. V. Alexandrov, Y. T. Zhu, and T. C. Lowe, J. Mater. Res. 17(1), 5 (2002).

    ADS  Google Scholar 

  2. K. S. Kumar, S. Suresh, M. F. Chisholm, J. A. Horton, and P. Wang, Acta Mater. 51(3), 387 (2003).

    Article  Google Scholar 

  3. X. Zhang, H. Wang, R. O. Scattergood, J. Narayan, C. C. Koch, A. V. Sergueeva, and A. K. Mukherjee, Appl. Phys. Lett. 81(5), 823 (2002).

    Article  ADS  Google Scholar 

  4. S. X. McFadden, R. S. Mishra, R. Z. Valiev, A. P. Zhilyaev, and A. K. Mukherjee, Nature (London) 398(6729), 684 (1999).

    Article  ADS  Google Scholar 

  5. R. S. Mishra, R. Z. Valiev, S. X. McFadden, R. K. Islamgaliev, and A. K. Mukherjee, Philos. Mag. A 81(1), 37 (2001).

    Article  Google Scholar 

  6. A. K. Mukherjee, Mater. Sci. Eng., A 322(1/2), 1 (2002).

    Google Scholar 

  7. K. A. Padmanabhan and H. Gleiter, Mater. Sci. Eng., A 381(1/2), 28 (2004).

    Google Scholar 

  8. B. I. Smirnov, V. V. Shpeĭzman, and V. I. Nikolaev, Fiz. Tverd. Tela (St. Petersburg) 47(5), 816 (2005) [Phys. Solid State 47 (5), 816 (2005)].

    Google Scholar 

  9. R. Z. Valiev and I. V. Aleksandrov, Nanostructured Materials Produced by Severe Plastic Deformation (Logos, Moscow, 2000) [in Russian].

    Google Scholar 

  10. Yu. R. Kolobov, R. Z. Valiev, G. P. Grabovetskaya, A. P. Zhilyaev, E. F. Dudarev, K. V. Ivanov, M. B. Ivanov, O. A. Kashin, and E. V. Naĭdenkin, Grain-Boundary Diffusion and Properties of Nanostructured Materials (Nauka, Novosibirsk, 2001) [in Russian].

    Google Scholar 

  11. M. Yu. Gutkin and I. A. Ovid’ko, Physical Mechanics of Deformed Nanostructures, Vol. 1: Nanocrystalline Materials (Yanus, St. Petersburg, 2003) [in Russian].

    Google Scholar 

  12. M. Yu. Gutkin and I. A. Ovid’ko, Plastic Deformation in Nanocrystalline Materials (Springer-Verlag, Berlin, 2004).

    Google Scholar 

  13. S. V. Bobylev, M. Yu. Gutkin, and I. A. Ovid’ko, Fiz. Tverd. Tela (St. Petersburg) 46(11), 1986 (2004) [Phys. Solid State 46 (11), 2053 (2004)].

    Google Scholar 

  14. M. Yu. Gutkin, I. A. Ovid’ko, and N. V. Skiba, Fiz. Tverd. Tela (St. Petersburg) 46(11), 1975 (2004) [Phys. Solid State 46 (11), 2042 (2004)].

    Google Scholar 

  15. V. A. Pozdnyakov and A. M. Glezer, Fiz. Tverd. Tela (St. Petersburg) 47(5), 793 (2005) [Phys. Solid State 47 (5), 817 (2005)].

    Google Scholar 

  16. M. Yu. Gutkin, I. A. Ovid’ko, and N. V. Skiba, Fiz. Tverd. Tela (St. Petersburg) 47(9), 1602 (2005) [Phys. Solid State 47 (9), 1662 (2005)].

    Google Scholar 

  17. M. Chen, E. Ma, K. J. Hemker, H. Sheng, Y. M. Wang, and X. Cheng, Science (Washington) 300(5623), 1275 (2003).

    Article  ADS  Google Scholar 

  18. H. van Swygenhoven, M. Spaczer, A. Caro, and D. Farkas, Phys. Rev. B: Condens. Matter 60(1), 22 (1999).

    ADS  Google Scholar 

  19. T. Shimokawa, A. Nakatani, and H. Kitagawa, Phys. Rev. B: Condens. Matter 71, 224110 (2005).

    Google Scholar 

  20. V. Yamakov, D. Wolf, M. Salazar, S. R. Phillpot, and H. Gleiter, Acta Mater. 49(14), 2713 (2001).

    Article  Google Scholar 

  21. V. Yamakov, D. Wolf, S. R. Phillpot, A. K. Mukherjee, and H. Gleiter, Nat. Mater. 1(1), 45 (2002).

    Article  Google Scholar 

  22. V. Yamakov, D. Wolf, S. R. Phillpot, and H. Gleiter, Acta Mater. 50(20), 5005 (2002).

    Article  Google Scholar 

  23. P. M. Derlet and H. van Swygenhoven, Scr. Mater. 47(11), 719 (2002).

    Article  Google Scholar 

  24. X. Z. Liao, F. Zhou, E. J. Lavernia, S. G. Srinivasan, M. I. Baskes, D. W. He, and Y. T. Zhu, Appl. Phys. Lett. 83(4), 632 (2003).

    Article  ADS  Google Scholar 

  25. X. Z. Liao, F. Zhou, E. J. Lavernia, D. W. He, and Y. T. Zhu, Appl. Phys. Lett. 83(24), 5062 (2003).

    Article  ADS  Google Scholar 

  26. X. Z. Liao, S. G. Srinivasan, Y. H. Zhao, M. I. Baskes, Y. T. Zhu, F. Zhou, E. J. Lavernia, and H. F. Xu. Appl. Phys. Lett. 84(18), 3564 (2004).

    Article  ADS  Google Scholar 

  27. M. A. Shtremel’, Strength of Alloys, Part 1: Lattice Defects (Moscow Institute of Steel and Alloys, Moscow, 1999) [in Russian].

    Google Scholar 

  28. Y. T. Zhu, X. Z. Liao, S. G. Srinivasan, and E. J. Lavernia, J. Appl. Phys. 98, 034319 (2005).

    Google Scholar 

  29. R. C. Pond and L. M. F. Garcia-Garcia, Conf. Ser.—Inst. Phys. 61, 495 (1981).

    Google Scholar 

  30. Y. T. Zhu, X. Z. Liao, S. G. Srinivasan, Y. H. Zhao, M. I. Baskes, F. Zhou, and E. J. Lavernia, Appl. Phys. Lett. 85(21), 5049 (2004).

    Article  ADS  Google Scholar 

  31. S. V. Bobylev and I. A. Ovid’ko, Rev. Adv. Mater. Sci. 7(2), 75 (2004).

    Google Scholar 

  32. S. V. Bobylev, M. Yu. Gutkin, and I. A. Ovid’ko, Acta Mater. 52(13), 3793 (2004).

    Article  Google Scholar 

  33. M. Yu. Gutkin and I. A. Ovid’ko, Philos. Mag. 86(11), 1483 (2006).

    Article  Google Scholar 

  34. M. Yu. Gutkin and A. G. Sheinerman, Phys. Status Solidi B 241(8), 1810 (2004).

    Article  ADS  Google Scholar 

  35. T. Mura, Micromechanics of Defects in Solids (Martinus Nijhoff, Dordrecht, 1987).

    Google Scholar 

  36. M. Yu. Gutkin, I. A. Ovid’ko, and Yu. I. Meshcheryakov, J. Phys. III 3(8), 1563 (1993).

    Article  Google Scholar 

  37. J. P. Hirth and J. Lothe, Theory of Dislocations (McGraw-Hill, New York, 1968; Atmoizdat, Moscow, 1972).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © S.V. Bobylev, M.Yu. Gutkin, I.A. Ovid’ko, 2006, published in Fizika Tverdogo Tela, 2006, Vol. 48, No. 8, pp. 1410–1420.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bobylev, S.V., Gutkin, M.Y. & Ovid’ko, I.A. Generation of glide split-dislocation half-loops by grain boundaries in nanocrystalline Al. Phys. Solid State 48, 1495–1505 (2006). https://doi.org/10.1134/S1063783406080130

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783406080130

PACS numbers

Navigation