Skip to main content
Log in

Plasma bands in graphite

  • Semiconductors and Dielectrics
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The π + σ plasmons in a strongly oriented pyrolitic graphite were studied experimentally using the characteristic electron energy loss technique with an angular resolution in the reflection mode. It was established that the bulk intralayer π + σ plasma bands have two branches with a positive and a negative dispersion, respectively. Each dispersion branch of the π + σ plasmons is a doublet. The interlayer plasmons are characterized by a positive dispersion coefficient only. The results are interpreted qualitatively based on the special features of the electronic band spectrum of graphite. The doublet arises because both dipole and multipole interband transitions similar in intensity are excited in graphite exposed to electron bombardment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. S. Dresselhaus, G. Dresselhaus, and P. Avouris, Topics in Applied Physics, Vol. 80: Carbon Nanotubes: Synthesis, Structure, Properties, and Applications (Springer-Verlag, Berlin, 2001), p. 447.

    Google Scholar 

  2. B. Vasvari, Phys. Rev. B: Condens. Matter 55(12), 7993 (1997).

    ADS  Google Scholar 

  3. S. Logothetidis, Diamond Relat. Mater. 12, 141 (2003).

    Article  Google Scholar 

  4. H. Raether, Excitation of Plasmons and Interband Transitions by Electrons (Springer-Verlag, Berlin, 1980), p. 192.

    Google Scholar 

  5. C. Yannouleas, E. Bogachek, and U. Landman, Phys. Rev. B: Condens. Matter 53(10), 225 (1996).

    Google Scholar 

  6. S. Prawer, K. W. Nugent, D. N. Jamieson, and J. O. Orwa, Chem. Phys. Lett. 332, 93 (2000).

    Article  Google Scholar 

  7. E. M. Baĭtinger, M. M. Brzhezinskaya, and V. V. Shnitov, Khim. Fiz. Mezoskopiya 4(2), 178 (2002).

    Google Scholar 

  8. V. V. Shnitov, V. M. Mikoushkin, and A. V. Zacharevich, in Proceedings of the 14th European Conference on Surface Science (ECOSS-14), Leipzig, 1994 (Leipzig, 1994), p. 76.

  9. L. Papagno, L. Caputi. Surf. Sci. 125(2), 530 (1983).

    Article  Google Scholar 

  10. L. Vitali, M. A. Schneider, K. Kern, L. Wirtz, and A. Rubio, Phys. Rev. B: Condens. Matter 69(121), 414(R) (2004).

    Google Scholar 

  11. S. Xu, J. Cao, C. C. Miller, D. A. Mantell, R. Miller, and Y. Gao, Phys. Rev. Lett. 76(3), 483 (1996).

    Article  ADS  Google Scholar 

  12. U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer-Verlag, Berlin, 1995).

    Google Scholar 

  13. P. C. Clemmow and J. P. Dougherty, Electrodynamics of Particles and Plasmas (Addison-Wesley, Redwood City, CA, 1990; Mir, Moscow, 1996).

    Google Scholar 

  14. R. Tatar and S. Rabii, Phys. Rev. B: Condens. Matter 25(6), 4126 (1982).

    ADS  Google Scholar 

  15. F. Bassani and G. Pastori Parravicini, Electronic States and Optical Transition in Solids (Pergamon, Oxford, 1975; Nauka, Moscow; 1982).

    Google Scholar 

  16. E. M. Baĭtinger, Electronic Structure of Condensed Carbon (Ural State University, Sverdlovsk, 1988) [in Russian].

    Google Scholar 

  17. S. Y. Park and D. Stround, Phys. Rev. B: Condens. Matter 69, 125418 (2004).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © E.M. Baĭtinger, 2006, published in Fizika Tverdogo Tela, 2006, Vol. 48, No. 8, pp. 1380–1384.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baĭtinger, E.M. Plasma bands in graphite. Phys. Solid State 48, 1461–1465 (2006). https://doi.org/10.1134/S1063783406080063

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783406080063

PACS numbers

Navigation