Skip to main content
Log in

Electronic structure and elastic moduli of the simple cubic fullerite C24—A new allotropic carbon modification

  • Fullerenes and Atomic Clusters
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The energy band structure, equation of state, density of states, and elastic moduli of a new allotropic carbon modification, namely, fullerite C24 with a simple cubic lattice (known previously as cubic graphite), are calculated by the full-potential linearized augmented-plane-wave (FLAPW) method with geometry optimization for the first time. The dependence of the total energy on the lattice constant exhibits a minimum for a 0 = 0.60546 nm. In this case, the lengths of the C-C bonds between fullerene molecules, the lengths of the 6,6-bonds shared by hexagons, and the lengths of the 4,6-bonds shared by a square and a hexagon are equal to 0.1614, 0.1503, and 0.1637 nm, respectively. An analysis of the energy band structure and the density of states demonstrates that the simple cubic fullerite C24 is a direct-band-gap insulator or a semiconductor with a band gap of 1.6 eV. The calculated bulk modulus B 0 = 196 GPa and the elastic moduli C 11 = 338 GPa, C 12 = 139 GPa, and C 44 = 30 GPa indicate that the fullerite under investigation is a mechanically stable material. The inference is made that the simple cubic fullerite C24 is a new diamond-like molecular zeolite with a unique combination of properties, such as the porosity and nonpolarizability, on the one hand, and the mechanical strength, chemical inertness, and high thermal conductivity, on the other hand. The simple cubic fullerite C24 can be considered a promising low-dielectric-constant (low-k) material (ɛ0 < 5.7) for use in fabricating interconnections and substrates intended for integrated circuits and nanoelectronics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. V. Pokropivny and A. V. Pokropivny, Fiz. Tverd. Tela (St. Petersburg) 46(2), 380 (2004) [Phys. Solid State 46 (2), 392 (2004)].

    Google Scholar 

  2. R. B. Aust and H. C. Drickamer, Science (Washington) 140, 817 (1963).

    ADS  Google Scholar 

  3. F. P. Bundy and J. S. Kasper, J. Chem. Phys. 46, 3437 (1967).

    Article  Google Scholar 

  4. D. V. Fedoseev, B. V. Deryagin, A. N. Varnin, et al., Dokl. Akad. Nauk SSSR 228, 371 (1976).

    Google Scholar 

  5. V. V. Slodkevich, Dokl. Akad. Nauk SSSR 253, 697 (1980).

    Google Scholar 

  6. A. S. Smolyar, Yu. I. Sozin, V. A. Barkholenko, S. N. Maloshtan, V. A. Kuts, V. G. Gurin, A. P. Arkhipov, A. Yu. Gerasimov, N. A. Razvadovskiĭ, and A. N. Titenko, Sverkhtverd. Mater., No. 2, 79 (2002).

  7. V. V. Pokropivny, A. V. Pokropivny, V. V. Skorokhod, and A. V. Kurdyumov, Dopov. Nats. Akad. Nauk Ukr., No. 4, 112 (1999).

  8. V. V. Pokropivny, V. V. Skorokhod, G. S. Oleinik, A. V. Kurdyumov, T. S. Bartnitskaya, A. V. Pokropivny, A. G. Sisonyuk, and D. M. Sheichenko, J. Solid State Chem. 154, 214 (2000).

    Article  ADS  Google Scholar 

  9. I. V. Stankevich, M. V. Nikerov, and D. A. Bochvar, Usp. Khim. 53, 1101 (1984).

    Google Scholar 

  10. V. V. Pokropivny, Nanostrukt. Materialoved. 1, 38 (2005).

    Google Scholar 

  11. I. V. Stankevich, A. L. Chistyakov, E. G. Gal’pern, and N. P. Gambaryan, Zh. Strukt. Khim. 36, 976 (1995).

    Google Scholar 

  12. T. Oku, M. Kuno, H. Kitahara, and I. Navita, Int. J. Inorg. Mater. 3, 597 (2001).

    Article  Google Scholar 

  13. P. Blaha, K. Schwarz, and J. Luitz, WIEN97: A Full Potential Linearized Augmented Plane Wave Package for Calculating Crystal Properties (Technical University, Vienna, 1999).

    Google Scholar 

  14. J. P. Perdew, S. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).

    Article  ADS  Google Scholar 

  15. P. E. Blöch, O. Jepsen, and O. K. Andersen, Phys. Rev. B: Condens. Matter 49, 16223 (1994).

    Google Scholar 

  16. J. Rifkin, XMD: The Molecular Dynamics Program (http://www.ims.uconn.edu/centers/simul).

  17. J. Tersoff, Phys. Rev. Lett. 61, 2879 (1988).

    Article  ADS  Google Scholar 

  18. F. D. Murnaghan, Proc. Natl. Acad. Sci. USA 30, 244 (1944).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  19. J. Donohue, The Structure of Elements (Wiley, New York, 1974).

    Google Scholar 

  20. H. J. McSkimin, P. Andreatch, Jr., and P. Glynn, J. Appl. Phys. 43, 985 (1972).

    Article  ADS  Google Scholar 

  21. D. Shamiryan, T. Abell, F. Iacopi, and K. Maex, Mater. Today (Oxford, UK) 7(1), 34 (2004).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © V.L. Bekenev, V.V. Pokropivny, 2006, published in Fizika Tverdogo Tela, 2006, Vol. 48, No. 7, pp. 1324–1328.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bekenev, V.L., Pokropivny, V.V. Electronic structure and elastic moduli of the simple cubic fullerite C24—A new allotropic carbon modification. Phys. Solid State 48, 1405–1410 (2006). https://doi.org/10.1134/S1063783406070298

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783406070298

PACS numbers

Navigation