Skip to main content
Log in

Simulation of damage accumulation kinetics with a probabilistic cellular automaton

  • Defects, Dislocations, and Physics of Strength
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The kinetics of damage accumulation and the evolution of damage clusters in loaded materials are simulated with a probabilistic cellular automaton controlled by three probabilities, namely, by the probabilities of free-cell occupation, cluster perimeter growth, and coalescence of clusters separated by a critical distance. The automaton algorithm is realized with Microsoft Visual Basic 6.0 as a single-document Windows application connected with Microsoft Excel, which is used as an automaton client to save and process output data. The operation of the automaton is illustrated by the example of the kinetics of damage accumulation and the evolution of a damage cluster structure compared for two simulation scenarios.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. N. Zhurkov, V. S. Kuksenko, V. N. Savel’ev, and U. Sultonov, Izv. Akad. Nauk SSSR, Fiz. Zemli 6, 11 (1977).

    Google Scholar 

  2. S. N. Zhurkov, V. S. Kuksenko, and V. A. Petrov, Dokl. Akad. Nauk SSSR 259(6), 1350 (1981).

    Google Scholar 

  3. V. A. Petrov, Fiz. Tverd. Tela (Leningrad) 25(10), 3110 (1983) [Sov. Phys. Solid State 25 (10), 1793 (1983)].

    Google Scholar 

  4. N. G. Tomilin, E. E. Damaskinskaya, and V. S. Kuksenko, Fiz. Tverd. Tela (St. Petersburg) 36(10), 3101 (1994) [Phys. Solid State 36 (10), 1649 (1994)].

    Google Scholar 

  5. V. I. Vettegren, V. S. Kuksenko, N. G. Tomilin, and M. A. Kryuchkov, Fiz. Tverd. Tela (St. Petersburg) 46(10), 1793 (2004) [Phys. Solid State 46 (10), 1854 (2004)].

    Google Scholar 

  6. D. V. Alekseev and P. V. Egorov, Dokl. Akad. Nauk 333(6), 769 (1993).

    Google Scholar 

  7. D. V. Alekseev, P. V. Egorov, V. V. Ivanov, A. A. Mal’shin, and A. G. Pimonov, Fiz.-Tekh. Probl. Razrab. Polezn. Iskop. 5, 45 (1993).

    Google Scholar 

  8. E. E. Damaskinskaya and N. G. Tomilin, Fiz. Tverd. Tela (Leningrad) 33(1), 278 (1991) [Sov. Phys. Solid State 33 (1), 160 (1991)].

    Google Scholar 

  9. S. Nishiuma and S. Miyazima, Physica A (Amsterdam) 278(3–4), 295 (2000).

    ADS  Google Scholar 

  10. P. A. Martynyuk, E. N. Sher, and G. V. Basheev, Fiz.-Tekhn. Probl. Razrab. Mestorozhd. Polezn. Iskop. 4, 52 (2000).

    Google Scholar 

  11. E. N. Sher, Fiz.-Tekhn. Probl. Razrab. Mestorozhd. Polezn. Iskop. 3, 56 (2003).

    Google Scholar 

  12. V. K. Vanag, Usp. Fiz. Nauk 169(5), 361 (1999) [Phys. Usp. 42, 413 (1999)].

    Google Scholar 

  13. H. Gould and J. Tobochnik, Computer Simulations Methods (Addison-Wesley, Boston, 1988; Mir, Moscow, 1990), Part 2.

    Google Scholar 

  14. D. V. Alekseev, Computer Simulation of Physical Problems in Microsoft Visual Basic (SOLON-Press, Moscow, 2004) [in Russian].

    Google Scholar 

  15. D. V. Alekseev and G. A. Kazunina, in Proceedings of the International Conference on Geodynamics and Stress Condition of the Interior of the Earth, Novosibirsk, Russia, 2004 (Institute of Mining, Siberian Division of the Russian Academy of Science, Novosibirsk, 2004), p. 184 [in Russian]

    Google Scholar 

  16. D. V. Alekseev and G. A. Kazunina, in Proceedings of the All-Russian Seminar on Modeling of Nonequilibrium Systems, Krasnoyarsk, Russia, 2004 (Institute of Computational Modeling, Siberian Division of the Russian Academy of Sciences, Krasnoyarsk, 2004), p. 4 [in Russian].

    Google Scholar 

  17. J. Feder, Fractals (Plenum, New York, 1988; Mir, Moscow, 1991).

    Google Scholar 

  18. G. G. Malinetskiĭ and A. B. Potapov, Modern Problems of Nonlinear Dynamics (URSS, Moscow, 2002), p. 358 [in Russian].

    Google Scholar 

  19. G. G. Malinetskiĭ and A. V. Podlazov, Izv. Vyssh. Uchebn. Zaved., Prikl. Nelineĭnaya Din. 5(5), 89 (1997).

    Google Scholar 

  20. A. V. Podlazov, Izv. Vyssh. Uchebn. Zaved., Prikl. Nelineĭnaya Din. 9(1), 49 (2001).

    MATH  Google Scholar 

  21. P. Bak, C. Tang, and K. Wiesenfeld, Phys. Rev. A: At., Mol., Opt. Phys. 38(1), 364 (1988).

    ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © D.V. Alekseev, G.A. Kazunina, 2006, published in Fizika Tverdogo Tela, 2006, Vol. 48, No. 2, pp. 255–261.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alekseev, D.V., Kazunina, G.A. Simulation of damage accumulation kinetics with a probabilistic cellular automaton. Phys. Solid State 48, 272–278 (2006). https://doi.org/10.1134/S1063783406020132

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783406020132

PACS numbers

Navigation