Skip to main content
Log in

Photoconductivity and Infrared-Light Absorption in p-GaAs/AlGaAs Quantum Wells

  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

The low-temperature impurity-assisted photoconductivity and absorption spectra of a nanostructure with acceptor-doped multiple GaAs/AlGaAs quantum wells are investigated. The experimental absorption and photoconductivity spectra agree well with each other. Using the calculated energy spectrum of the hole and acceptor states in the quantum wells, the contributions of the transitions of holes from the ground acceptor state to the delocalized states of valence subbands and excited impurity states, and the contributions of the acceptor photoionization to the states above a quantum well, are identified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. R. M. Woodward, B. E. Cole, V. P. Wallace, R. J. Pye, D. D. Arnone, E. H. Linfield, and M. Pepper, Phys. Med. Biol. 47, 3853 (2002).

    Article  Google Scholar 

  2. M. C. Kemp, P. F. Taday, B. E. Cole, J. A. Cluff, A. J. Fitzgerald, and W. R. Tribe, Terahertz Milit. Sec. Appl. 5070, 44 (2003).

    Article  ADS  Google Scholar 

  3. A. J. Fitzgerald, B. E. Cole, and P. F. Taday, J. Pharm. Sci. 94, 177 (2005).

    Article  Google Scholar 

  4. A. S. Skryl’ and M. V. Tsarev, The Use of Terahertz Radiation for the Study of Art Objects (Nizhegor. Univ., Nizh. Novgorod, 2011) [in Russian].

    Google Scholar 

  5. H. W. Hubers, S. G. Pavlov, H. Riemann, N. V. Abrosimov, R. Kh. Zhukavin, and V. N. Shastin, Appl. Phys. Lett. 84, 3600 (2004).

    Article  ADS  Google Scholar 

  6. S. G. Pavlov, N. Deßmann, V. N. Shastin, R. Kh. Zhukavin, B. Redlich, A. F. G. van der Meer, M. Mittendorff, S. Winnerl, N. V. Abrosimov, H. Riemann, and H.-W. Hubers, Phys. Rev. X 4, 021009 (2014).

    Google Scholar 

  7. A. V. Andrianov, A. O. Zakhar’in, Yu. L. Ivanov, and M. S. Kipa, JETP Lett. 91, 96 (2010).

    Article  ADS  Google Scholar 

  8. A. V. Andrianov, A. O. Zakhar’in, I. N. Yassievich, and N. N. Zinov’ev, JETP Lett. 79, 365 (2004).

    Article  ADS  Google Scholar 

  9. W. T. Masselink, Y.-C. Chang, and H. Morkoç, Solid State Electron. 29, 205 (1986).

    Article  ADS  Google Scholar 

  10. A. Blom, M. A. Odnoblyudov, I. N. Yassievich, and K. A. Chao, Phys. Rev. B 68, 165338 (2003).

    Article  ADS  Google Scholar 

  11. D. Stehr, C. Metzner, M. Helm, T. Roch, and G. Strasser, Phys. Rev. Lett. 95, 257401 (2005).

    Article  ADS  Google Scholar 

  12. D. A. Firsov, L. E. Vorobjev, V. Yu. Panevin, A. N. Sofronov, R. M. Balagula, I. S. Makhov, D. V. Kozlov, and A. P. Vasil’ev, Semiconductors 49, 28 (2015).

    Article  ADS  Google Scholar 

  13. I. S. Makhov, V. Yu. Panevin, D. A. Firsov, L. E. Vorobjev, A. P. Vasil’ev, and N. A. Maleev, J. Lumin. 210, 352 (2019).

    Article  Google Scholar 

  14. I. S. Makhov, V. Yu Panevin, D. A. Firsov, L. E. Vorobjev, and G. V. Klimko, J. Appl. Phys. 126, 175702 (2019).

    Article  ADS  Google Scholar 

  15. N. W. M. Zheng, M. P. Halsall, and P. Harmer, J. Appl. Phys. 92, 6039 (2002).

    Article  ADS  Google Scholar 

  16. H. H. Chen, Y.-H. Wang, and M.-P. Houng, IEEE J. Quant. Electron. 32, 471 (1996).

    Article  ADS  Google Scholar 

  17. M. Ya. Vinnichenko, I. S. Makhov, V. Yu. Panevin, L. E. Vorobjev, S. V. Sorokin, I. V. Sedova, and D. A. Firsov, Phys. E (Amsterdam, Neth.) 124, 114301 (2020).

  18. J. S. Blakemore, Semiconductor Statistics (Courier, Mineola, New York, 2002).

    MATH  Google Scholar 

  19. W. T. Masselink, Y. C. Chang, and H. Morkoç, Phys. Rev. B 32, 5190 (1985).

    Article  ADS  Google Scholar 

  20. G. T. Einevoll and Y. C. Chang, Phys. Rev. B 41, 1447 (1990).

    Article  ADS  Google Scholar 

  21. P. A. Belov, Phys. E (Amsterdam, Neth.) 112, 96 (2019).

  22. A. T. Hunter and T. C. McGill, Appl. Phys. Lett. 40, 169 (1982).

    Article  ADS  Google Scholar 

  23. R. Dingle, C. Weisbuch, H. L. Stormer, H. Morkoç, and A. Y. Cho, Appl. Phys. Lett. 40, 507 (1982).

    Article  ADS  Google Scholar 

  24. K. R. Elliott, Appl. Phys. Lett. 42, 274 (1983).

    Article  ADS  Google Scholar 

  25. J. C. Borgoin, H. J. von Bardeleben, and D. Stievenard, J. Appl. Phys. 64 (9), R65 (1988).

    Article  ADS  Google Scholar 

  26. V. Akimov, D. A. Firsov, C. A. Duque, V. Tulupenko, R. M. Balagula, M. Y. Vinnichenko, and L. E. Voro-bjev, Opt. Mater. 66, 160 (2017).

    Article  ADS  Google Scholar 

  27. D. A. Firsov, L. E. Vorobjev, M. Ya. Vinnichenko, R. M. Balagula, M. M. Kulagina, and A. P. Vasil’iev, Semiconductors 49, 1425 (2015).

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to A.N. Sofronov for help in the calculation.

Funding

This study was carried out within the state assignment of the Ministry of Science and Higher Education of the Russian Federation and supported by the Russian Science Foundation, project no. 18-72-00034.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Ya. Vinnichenko.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by E. Bondareva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vinnichenko, M.Y., Makhov, I.S., Kharin, N.Y. et al. Photoconductivity and Infrared-Light Absorption in p-GaAs/AlGaAs Quantum Wells. Semiconductors 55, 710–716 (2021). https://doi.org/10.1134/S1063782621080212

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063782621080212

Keywords:

Navigation