Skip to main content
Log in

Two-Photon Exciton Absorption in CdSe/CdS Nanoplatelets Colloidal Solution

  • QUANTUM WELLS AND QUANTUM DOTS
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

This work devotes to investigation of two-photon absorption in a colloidal solution of nanoplatelets CdSe/CdS (3.5 and 2 monolayers of CdSe core and CdS shell respectively) in the case of light- and heavy-hole exciton excitation (1lh-1e, 536 nm) and (1hh-1e, 578 nm) by femtosecond laser radiation (1064 nm, 100 kHz). An open-aperture z-scan technique was utilized to measure nonlinear two-photon absorption coefficient which was found as β = 0.08 ± 0.01 cm/GW, two-photon absorption cross sections σ(2) ≈ 1.5 × 106 GM and nonlinear refraction index γ ≈ –5 × 10–16 cm2/W. The revealed features of the measured z-scan dependencies can be the evidence of amplified spontaneous emission in the colloidal solution of CdSe/CdS nanoplatelets at high intensity of two-photon excitation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. F. Wang, D. Banerjee, Y. Liu, X. Chen, and X. Liu, Analyst 135, 1839 (2010).

    Article  ADS  Google Scholar 

  2. K.-L. Chou, N. Won, J. Kwag, S. Klim, and J.-Y. Chen, J. Mater. Chem. B 1, 4584 (2013).

    Article  Google Scholar 

  3. M. T. Quick, N. Owschimikowa, A. H. Khan, A. Polovitsyn, I. Moreels, U. Woggon, and A. W. Achtstein, Nanoscale 11, 17293 (2019).

    Article  Google Scholar 

  4. Quantum Electronics: A Treatise, Ed. by H. Rabin and C. L. Tang (Academic, New York, 1975).

    Google Scholar 

  5. E.-S. Wu, J. H. Strickler, W. R. Harrell, and W. W. Webb, Proc. SPIE 1674, 776 (1992).

    Article  ADS  Google Scholar 

  6. B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I. Y. S. Lee, D. McCord-Maughon, J. Qin, H. Röckel, M. Rumi, X. L. Wu, S. R. Marder, and J. W. Perry, Nature (London, U.K.) 398, 51 (1999).

    Article  ADS  Google Scholar 

  7. E. Peteryayeva, W. Algar, and I. L. Medintz, Appl. Spectrosc. 67, 215 (2013).

    Article  ADS  Google Scholar 

  8. V. Dneprovskii, M. Kozlova, A. Smirnov, and T. Wumaier, Phys. E (Amsterdam, Neth.) 44, 1920 (2012).

  9. V. S. Dneprovskii, M. V. Kozlova, and A. M. Smirnov, Quantum Electron. 43, 927 (2013).

    Article  ADS  Google Scholar 

  10. V. Dneprovskii, E. Zhukov, M. Kozlova, A. Smirnov, and T. Wumaier, Mosc. Univ. Phys. Bull. 67, 201 (2012).

    Article  ADS  Google Scholar 

  11. A. M. Smirnov, M. V. Kozlova, and V. S. Dneprovskii, Opt. Spectrosc. 120, 472 (2016).

    Article  ADS  Google Scholar 

  12. G. Xing, Y. Liao, X. Wu, S. Chakrabortty, X. Liu, E. K. L. Yeow, Y. Chan, and T. C. Sum, ACS Nano 6, 10835 (2012).

    Article  Google Scholar 

  13. X. Wang, X. Zhuang, F. Wackenhut, Y. Li, A. Pan, and A. J. Meixner, Laser Photon. Rev. 10, 835 (2016).

    Article  ADS  Google Scholar 

  14. A. W. Achtstein, J. Hennig, A. Prudnikau, M. V. Artemyev, and U. Woggon, J. Phys. Chem. C 117, 25756 (2013).

    Article  Google Scholar 

  15. X. Li, J. van Embden, J. W. M. Chon, and M. Gu, Appl. Phys. Lett. 94, 103117 (2009).

    Article  ADS  Google Scholar 

  16. M. Nyk, D. Wawrzynczyk, J. Szeremeta, and M. Samoc, Appl. Phys. Lett. 100, 041102 (2012).

    Article  ADS  Google Scholar 

  17. S.-C. Pu,  M.-J.  Yang,  C.-C.  Hsu,  C.-W.  Lai, C.-C. Hsieh, S. H. Lin, Y.-M. Cheng, and P.-T. Chou, Small 2, 1308 (2006).

    Article  Google Scholar 

  18. A. W. Achtstein, A. Ballester, J. L. Movilla, J. Hennig, J. I. Climente, A. Prudnikau, A. Antanovich, R. Scott, M. V. Artemyev, J. Planelles, and U. Woggon, Phys. Chem. C 119, 1260 (2015).

    Article  Google Scholar 

  19. N. S. Makarov, J. Campo, J. M. Hales, and J. W. Perry, Opt. Mater. Express 1, 551 (2011).

    Article  ADS  Google Scholar 

  20. M. Pawlicki, H. A. Collins, R. G. Denning, and H. L. Anderson, Angew. Chem. Int. Ed. 48, 3244 (2009).

    Article  Google Scholar 

  21. R. Scott, A. W. Achtstein, A. Prudnikau, A. Antanovich, S. Christodoulou, I. Moreels, M. Artemyev, and U. Woggon, Nano Lett. 15, 4985 (2015).

    Article  ADS  Google Scholar 

  22. M. Pelton, S. Ithurria, R. D. Schaller, D. S. Dolzhikov, and D. V. Talapin, Nano Lett. 12, 6158 (2012).

    Article  ADS  Google Scholar 

  23. S. Ithurria, M. D. Tessier, B. Mahler, R. P. S. M. Lobo, B. Dubertret, and Al. L. Efros, Nat. Mater. 10, 936 (2011).

    Article  ADS  Google Scholar 

  24. F. M. Olutas, B. Guzelturk, Y. Kelestemur, A. Yeltik, S. Delikanli, and H. V. Demir, ACS Nano 9, 5041 (2015).

    Article  Google Scholar 

  25. F. T. Rabouw, J. C. van der Bok, P. Spinicelli, B. Mahler, M. Nasilowski, S. Pedetti, B. Dubertret, and D. Vanmaekelbergh, Nano Lett. 16, 2047 (2016).

    Article  ADS  Google Scholar 

  26. A. M. Smirnov, A. D. Golinskaya, B. M. Saidzhonov, R. B. Vasiliev, V. N. Mantsevich, and V. S. Dneprovskii, J. Lumin. 229, 117682 (2021).

  27. A. M. Smirnov, A. D. Golinskaya, E. V. Zharkova, M. V. Kozlova, B. M. Saidzhonov, R. B. Vasil’ev, and V. S. Dneprovskii, JETP Letters 109, 454 (2019).

  28. A. M. Smirnov, V. N. Mantsevich, D. S. Smirnov, A. D. Golinskaya, M. V. Kozlova, B. M. Saidjonov, V. S. Dneprovskii, and R. B. Vasiliev, Solid State Commun. 299, 113651 (2019).

  29. A. M. Smirnov, A. D. Golinskaya, B. M. Saidzhonov, R. B. Vasiliev, V. N. Mantsevich, and V. S. Dneprovskii, JETP Letters 109, 370 (2019).

  30. I. D. Laktaev, B. M. Saidzhonov, R. B. Vasiliev, A. M. Smirnov, and O. V. Butov, Results in Physics 19, 103503 (2020).

  31. J. Heckmann, R. Scott, A. V. Prudnikau, A. Antanovich, N. Owschimikow, M. Artemyev, J. I. Climente, U. Woggon, N. B. Grosse, and A. W. Achtstein, Nano Lett. 17, 6321 (2017).

    Article  ADS  Google Scholar 

  32. V. Krivenkov, P. Samokhvalov, D. Dyagileva, A. Karaulov, and I. Nabiev, ACS Photon. 7, 831 (2020).

  33. B. M. Saidzhonov, V. B. Zaytsev, M. V. Berekchiian, and R. B. Vasiliev, J. Lumin. 222, 117134 (2020).

    Article  Google Scholar 

  34. B. M. Saidzhonov, V. F. Kozlovsky, V. B. Zaytsev, and R. B. Vasiliev, J. Lumin. 209, 170 (2019).

    Article  Google Scholar 

  35. M. Sheik-Bahae, A. A. Said, T.-H. Wei, D. J. Hagan, and E. W. van Stryland, IEEE J. Quantum Electron. 26, 760 (1990).

    Article  ADS  Google Scholar 

  36. A. Gnoli, L. Razzari, and M. Righini, Opt. Express 23, 7976 (2005).

    Article  ADS  Google Scholar 

Download references

Funding

This work was supported by the state task and the Russian Foundation for Basic Research (project nos. 19-32-90240 and 19-03-00481(sample synthesis)).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to I. D. Laktaev, D. V. Przhiialkovskii, B. M. Saidzhonov, R. B. Vasiliev, A. M. Smirnov or O. V. Butov.

Ethics declarations

There are no conflicts to declare.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Laktaev, I.D., Przhiialkovskii, D.V., Saidzhonov, B.M. et al. Two-Photon Exciton Absorption in CdSe/CdS Nanoplatelets Colloidal Solution. Semiconductors 54, 1900–1903 (2020). https://doi.org/10.1134/S1063782620140158

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063782620140158

Keywords:

Navigation