• Published:

Spatial and Hyperfine Characteristics of SiV and SiV0 Color Centers in Diamond: DFT Simulation


One of the most promising platforms to implement quantum technologies are coupled electron-nuclear spins in diamond in which the electrons of paramagnetic color centers play a role of “fast” qubits, while nuclear spins of nearby 13C atoms can store quantum information for a very long time due to their exceptionally high isolation from the environment. Essential prerequisite for a high-fidelity spin manipulation in these systems with tailored control pulse sequences is a complete knowledge of hyperfine interactions. Development of this understanding for the negatively charged “silicon-vacancy” (SiV) and neutral (SiV0) color center, is a primary goal of this article, where we are presenting shortly our recent results of computer simulation of spatial and hyperfine characteristics of these SiV centers in H-terminated cluster C128[SiV]H98 along with their comparison with available experimental data.

This is a preview of subscription content, log in to check access.

Fig. 1.
Fig. 2.


  1. 1

    J. N. Becker and C. Becher, Phys. Status Solidi A 214, 170058 (2017).

    Google Scholar 

  2. 2

    L. J. Rogers et al., Phys. Rev. Lett. 113, 263602 (2014).

    ADS  Article  Google Scholar 

  3. 3

    B. Pingault et al., Nat. Commun. 8, 15579 (2017).

    ADS  Article  Google Scholar 

  4. 4

    M. H. Metsch et al., Phys. Rev. Lett. 122, 190503 (2019).

    ADS  Article  Google Scholar 

  5. 5

    D. D. Sukachev et al., Phys. Rev. Lett. 119, 223602 (2017).

    ADS  Article  Google Scholar 

  6. 6

    S. T. Nguyen et al., Phys. Rev. Lett. 123, 183602 (2019).

    ADS  Article  Google Scholar 

  7. 7

    S. T. Nguyen et al., Phys. Rev. B 100, 165428 (2019).

    ADS  Article  Google Scholar 

  8. 8

    M. K. Bhaskar et al., Nature (London, U.K.) 580, 60 (2020).

    ADS  Article  Google Scholar 

  9. 9

    U. F. S. D’Haenens-Johansson et al., Phys. Rev. B 84, 245208 (2011).

    ADS  Article  Google Scholar 

  10. 10

    B. C. Rose et al., Science (Washington, DC, U. S.) 361, 60 (2018).

    ADS  Article  Google Scholar 

  11. 11

    A. Gali and J. Maze, Phys. Rev. B 88, 235205 (2013).

    ADS  Article  Google Scholar 

  12. 12

    Z.-H. Zhang et al., arXiv:2004.12544v1 [cond-mat.mes-hall].

  13. 13

    A. M. Edmonds et al., Phys. Rev. B 77, 245205 (2008).

    ADS  Article  Google Scholar 

  14. 14

    A. L. Pushkarchuk et al., Int. J. Nanosci. 18, 1940010 (2019).

    Article  Google Scholar 

  15. 15

    C. J. Hepp, Dissertation (Saarbrücken, 2014).

  16. 16

    J. N. Becker, Dissertation (Saarbrücken, 2017).

Download references


This work has been supported in part by Belarusian Republican Foundation for Fundamental Research, grants no. FMS-036, and by National Research Nuclear University “MEPhI” (Moscow Engineering Physics Institute).

Author information



Corresponding authors

Correspondence to A. P. Nizovtsev or S. Ya. Kilin or A. L. Pushkarchuk or S. A. Kuten or N. A. Poklonski or D. Michels or D. Lyakhov or F. Jelezko.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Nizovtsev, A.P., Kilin, S.Y., Pushkarchuk, A.L. et al. Spatial and Hyperfine Characteristics of SiV and SiV0 Color Centers in Diamond: DFT Simulation. Semiconductors 54, 1685–1688 (2020). https://doi.org/10.1134/S1063782620120271

Download citation


  • silicon-vacancy (SiV) color center
  • diamond
  • 13C nuclear spin
  • hyperfine interaction
  • density functional theory