Skip to main content
Log in

Formation of GaN Nanorods in Monodisperse Spherical Mesoporous Silica Particles

  • SEMICONDUCTOR STRUCTURES, LOW-DIMENSIONAL SYSTEMS, AND QUANTUM PHENOMENA
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

Gallium-nitride nanorods with a diameter of 15–40 nm and length of 50–150 nm are synthesized in monodisperse spherical mesoporous silica particles (MSMSPs) by high-temperature annealing of the Ga2O3 precursor in ammonia. The template material (a-SiO2) is selectively removed by etching the composite MSMSP/GaN particles with HF to give individual GaN nanorods. It is shown that the size of the GaN nanorods substantially exceeds the pore size of the MSMSPs (diameter ~3 nm, length ~10 nm). A possible mechanism by which GaN nanorods are formed is proposed. Redistribution of the material within the composite MSMSP/GaN particles possibly occurs via the surface diffusion of gaseous molecules within mesopores and via the diffusion of Ga and N atoms in a-SiO2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. C.-C. Tsai, G.-H. Li, Y.-T. Lin, C.-W. Chang, P. Wadekar, Q. Y.-S. Chen, L. Rigutti, M. Tchernycheva, F. H. Julien, and L.-W. Tu, Nanoscale Res. Lett. 6, 631 (2011).

    ADS  Google Scholar 

  2. D. Bimberg, Semiconductor Nanostructures (Springer, Berlin, Heidelberg, 2008).

    Google Scholar 

  3. R. Agarwal and C. M. Lieber, Appl. Phys. A 85, 209 (2006).

    ADS  Google Scholar 

  4. C. M. Lieber and Z. L. Wang, MRS Bull. 32, 99 (2007).

    Google Scholar 

  5. D. Ehrentraut, E. Meissner, and M. Bockowski, Technology of Gallium Nitride Crystal Growth (Springer, Berlin, Heidelberg, 2010).

    Google Scholar 

  6. K. Kishino, H. Sekiguchi, and A. Kikuchi, J. Cryst. Growth 311, 2063 (2009).

    ADS  Google Scholar 

  7. X. L. Chen, J. Y. Li, Y. G. Cao, Y. Lan, H. Li, M. He, C. Wang, Z. Zhang, and Z. Qiao, Adv. Mater. 12, 1432 (2000).

    Google Scholar 

  8. J. C. Johnson, H. J. Choi, K. P. Knutsen, R. D. Schaller, P. Yang, and R. J. Saykally, Nat. Mater. 1, 106 (2002).

    ADS  Google Scholar 

  9. X. F. Duan and C. M. Lieber, J. Am. Chem. Soc. 122, 188 (2000).

    Google Scholar 

  10. D. K. T. Ng, L. S. Tan, and M. H. Hong, Curr. Appl. Phys. 6, 403 (2006).

    ADS  Google Scholar 

  11. K. A. Bertness, A. Roshko, L. M. Mansfield, T. E. Harvey, and N. A. Sanford, J. Cryst. Growth 300, 94 (2007).

    ADS  Google Scholar 

  12. M. Tchernycheva, C. Sartel, G. Cirlin, L. Travers, G. Patriarche, J.-C. Harmand, L. S. Dang, J. Renard, B. Gayral, L. Nevou, and F. Julien, Nanotechnology 18, 385306 (2007).

    Google Scholar 

  13. J.-W. Jao, Y.-F. Zhang, Y.-H. Li, C. Su, X.-M. Song, H. Yan, and R.-Z. Wang, Sci. Rep. 5, 17692 (2015).

    ADS  Google Scholar 

  14. G. Suo, S. Jiang, J. Zhang, J. Li, and M. He, Adv. Condens. Matter Phys. 2014, 456163 (2014).

    Google Scholar 

  15. A. N. Semenov, D. V. Nechaev, S. I. Troshkov, A. V. Nashchekin, P. N. Brunkov, V. N. Jmerik, and S. V. Ivanov, Semiconductors 52, 1770 (2018).

    ADS  Google Scholar 

  16. H. Parala, A. Devi, W. Rogge, A. Birkner, and R. A. Fischer, J. Phys. IV (France) 11, 473 (2001).

    Google Scholar 

  17. C. T. Yang and M. H. Huang, J. Phys. Chem. B 109, 17842 (2005).

    Google Scholar 

  18. K. Dimos, L. Jankovi, I. B. Koutselas, M. A. Karakassides, R. Zboril, and P. Komadel, J. Phys. Chem. C 116, 1185 (2012).

    Google Scholar 

  19. E. Yu. Trofimova, D. A. Kurdyukov, Yu. A. Kukushkina, M. A. Yagovkina, and V. G. Golubev, Glass Phys. Chem. 37, 378 (2011).

    Google Scholar 

  20. E. Yu. Trofimova, D. A. Kurdyukov, S. A. Yakovlev, D. A. Kirilenko, Yu. A. Kukushkina, A. V. Nashchekin, A. A. Sitnikova, M. A. Yagovkina, and V. G. Golubev, Nanotechnology 24, 155601 (2013).

    ADS  Google Scholar 

  21. E. Yu. Stovpiaga, D. A. Kurdyukov, Yu. A. Kukushkina, V. V. Sokolov, and M. A. Yagovkina, Glass Phys. Chem. 41, 316 (2015).

    Google Scholar 

  22. E. Yu. Stovpiaga, D. A. Eurov, D. A. Kurdyukov, A. N. Smirnov, M. A. Yagovkina, V. Yu. Grigorev, V. V. Romanov, D. R. Yakovlev, and V. G. Golubev, Phys. Solid State 59, 1623 (2017).

    ADS  Google Scholar 

  23. D. A. Kurdyukov, D. A. Eurov, E. Yu. Stovpiaga, S. A. Yakovlev, D. A. Kirilenko, and V. G. Golubev, Phys. Solid State 56, 1033 (2014).

    ADS  Google Scholar 

  24. D. A. Kurdyukov, N. A. Feoktistov, D. A. Kirilenko, A. N. Smirnov, V. Yu. Davydov, and V. G. Golubev, Semiconductors 53, 1048 (2019).

    ADS  Google Scholar 

  25. D. A. Kurdyukov, D. A. Eurov, E. Yu. Stovpiaga, D. A. Kirilenko, S. V. Konyakhin, A. V. Shvidchenko, and V. G. Golubev, Phys. Solid State 58, 2545 (2016).

    ADS  Google Scholar 

  26. E. Yu. Stovpiaga, D. A. Eurov, D. A. Kurdyukov, A. N. Smirnov, M. A. Yagovkina, D. R. Yakovlev, and V. G. Golubev, Semiconductors 52, 1123 (2018).

    ADS  Google Scholar 

  27. D. A. Kurdyukov, D. A. Eurov, D. A. Kirilenko, J. A. Kukushkina, V. V. Sokolov, M. A. Yagovkina, and V. G. Golubev, Microporous Mesoporous Mater. 223, 225 (2016).

    Google Scholar 

  28. V. Yu. Davydov, Yu. E. Kitaev, I. N. Goncharuk, A. N. Smirnov, J. Graul, O. Semchinova, D. Uffmann, M. B. Smirnov, A. P. Mirgorodsky, and R. A. Evarestov, Phys. Rev. B 58, 12899 (1998).

    ADS  Google Scholar 

  29. V. Yu. Davydov, R. E. Dunin-Borkovski, V. G. Golubev, J. L. Hutchison, N. F. Kartenko, D. A. Kurdyukov, A. B. Pevtsov, N. V. Sharenkova, J. Sloan, and L. M. Sorokin, Semicond. Sci. Technol. 16, L5 (2001).

    ADS  Google Scholar 

  30. N. K. Thanh, N. Maclean, and S. Mahiddine, Chem. Rev. 114, 7610 (2014).

    Google Scholar 

  31. S. I. Sadovnikov and A. I. Gusev, Phys. Solid State 60, 1308 (2018).

    ADS  Google Scholar 

  32. Yu. M. Petrov, Clusters and Small Particles (Nauka, Moscow, 1986) [in Russian].

    Google Scholar 

  33. A. F. White and W. Mellvill, J. Am. Chem. Soc. 27, 373 (1905).

    Google Scholar 

  34. D. Dirtu, L. Odochian, A. Pui, and I. Humelnicu, Centr. Eur. J. Chem. 4, 666 (2006).

    Google Scholar 

  35. H. Kiyono, T. Sakai, M. Takahashi, and S. Shimada, J. Cryst. Growth 312, 2823 (2010).

    ADS  Google Scholar 

  36. K. Kachel, M. Korytov, D. Gogova, Z. Galazka, M. Albrecht, R. Zwierz, D. Siche, S. Golka, A. Kwasniewski, M. Schmidbauer, and R. Fornari, Cryst. Eng. Commun. 14, 8536 (2012).

    Google Scholar 

  37. D.-H. Kuo and W.-H. Wu, J. Electrochem. Soc. 156, K1 (2009).

    Google Scholar 

  38. R. Fornanini, Single Crystals of Electronic Materials (Woodhead, Elsevier, 2018).

  39. H. Schäffer, Chemical Transport Reactions (Elsevier, Amsterdam, 1964).

    Google Scholar 

  40. G. M. Gajiev, D. A. Kurdyukov, and V. V. Travnikov, Nanotechnology 17, 5349 (2006).

    ADS  Google Scholar 

  41. A. H. van Ommen, J. Appl. Phys. 57, 15 (1985).

    Google Scholar 

  42. A. S. Grove, O. Lkistiko, Jr. Sah, and C. T. Sah, J. Phys. Chem. Solids 25, 985 (1964).

    ADS  Google Scholar 

  43. J. Kioseoglou, M. Katsikini, K. Termentzidis, I. Karakostas, and E. C. Paloura, J. Appl. Phys. 121, 054301 (2017).

    ADS  Google Scholar 

  44. R. Jakiela, A. Barcz, E. Dumiszewska, and A. Jagoda, Phys. Status Solidi C 3, 1416 (2006).

    ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to A.N. Smirnov for Raman measurements of the GaN nanorods.

Measurements by transmission electron microscopy were performed on equipment of the federal Collective Use Center “Materials science and diagnostics in advanced technologies” (Ioffe Institute).

Funding

The study was financed by the State budget under State assignment no. 0040-2019-0012.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Yu. Stovpiaga.

Ethics declarations

The authors state that they have no conflict of interest.

Additional information

Translated by M. Tagirdzhanov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stovpiaga, E.Y., Kurdyukov, D.A., Kirilenko, D.A. et al. Formation of GaN Nanorods in Monodisperse Spherical Mesoporous Silica Particles. Semiconductors 54, 782–787 (2020). https://doi.org/10.1134/S106378262007012X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106378262007012X

Keywords:

Navigation