Abstract
Molybdenum- and tungsten-disulfide films are synthesized by chemical-vapor deposition. The set of optimal synthesis parameters (temperature, time, and amount and ratio of precursors) is established at which MoS2 domains with maximum lateral sizes of up to 250 μm on sapphire and MoS2 and WS2 domains up to 80 μm in size on SiO2 can be grown. Domain intergrowth leads to the formation of homogeneous single-layer MoS2 films. The Raman spectra of the synthesized films contain two characteristic peaks corresponding to the atomic vibrations in MoS2 and WS2. Photoluminescence of the single-layer and bilayer MoS2 films with a maximum intensity of 670 ± 2 nm and of the single-layer WS2 films with a maximum intensity of 630 ± 2 nm is detected. The photoluminescence spectral maps (the dependences of the photoluminescence intensity on the luminescence and excitation-light wavelengths) are measured. According to the measured data, the photoluminescence excitation spectrum of MoS2 has a maximum at 350 ± 5 nm and the photoluminescence excitation spectrum of WS2 has a maximum at 330 ± 5 nm. The I–V characteristics of the synthesized films are photosensitive in the visible spectral range.
This is a preview of subscription content, access via your institution.












REFERENCES
I. V. Antonova, Semiconductors 50, 66 (2016).
Y. Zhang, Y. Yao, M. G. Sendeku, L. Yin, X. Zhan, F. Wang, and J. He, Adv. Mater. 31, 1901694 (2019).
W. Zhao, R. M. Ribeiro, M. Toh, A. Carvalho, C. Kloc, A. H. Castro Neto, and G. Eda, Nano Lett. 13, 5627 (2013).
K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, Phys. Rev. Lett. 105, 136805 (2010).
W. Zhao, Z. Gjprnnevis, L. Chu, M. Toh, C. Kloc, P. H. Tan, and G. Eda, ACS Nano 7, 791 (2012).
Q. Zeng and Z. Liu, Adv. Electron. Mater. 4, 1700335 (2018).
H. R. Gutiérrez, N. Perea-López, A. L. Elías, A. Berkdemir, B. Wang, R. Lv, F. López-Urías, V. H. Crespi, H. Terrones, and M. Terrons, Nano Lett. 13, 3447 (2012).
G. Z. Magda, J. Petö, G. Dobrik, G. Hwang, L. P. Biró, and L. Tpasztó, Sci. Rep. 5, 14714 (2015).
A. Berkdemir, H. R. Gutiérrez, A. R. Botello-Méndez, N. Perea-López, A. L. Elías, C.-I. Chia, B. Wang, V. H. Crespi, F. López-Urías, J.-C. Carlier, H. Terrones, and M. Terrones, Sci. Rep. 3, 1755 (2013).
Y. Zhan, Z. Liu, S. Najmaei, P. M. Ajayan, and J. Lou, Small 8, 966 (2012).
S. L. Wong, H. Liu, and D. Chi, Progr. Cryst. Growth Charact. Mater. 62 (3), 9 (2016).
A. Özden, F. Ay, C. Sevik, and N. K. Perkgöz, Jpn. J. Appl. Phys. 56 (6S1), 06GG05 (2017).
N. Kumar, R. Tomar, N. Wadehra, M. M. Devi, B. Prakash, and S. Chakraverty, Cryst. Res. Technol. 53, 1800002 (2018).
Y. Gao, Z. Liu, D.-M. Sun, L. Huang, L.-P. Ma, L.-C. Yin, T. Ma, Z. Zhang, X.-L. Ma, L.-M. Peng, H.-M. Cheng, and W. Ren, Nat. Commun. 6, 8569 (2015).
Y. Zhang, J. Shi, G. Han, M. Li, Q. Ji, D. Ma, Y. Zhang, C. Li, X. Lang, Y. Zhang, and Z. Liu, Nano Res. 8, 2881 (2015).
Q. Ji, Y. Zhang, Y. Zhang, and Z. Liu, Chem. Soc. Rev. 44, 2587 (2015).
L. Su, Y. Yu, L. Cao, and Y. Zang, Nano Res. 8, 2686 (2015).
A. K. Geim and I. V. Grigorieva, Nature (London, U.K.) 499, 419 (2013).
H. Ago, H. Endo, P. Solís-Fernándesz, R. Takozawa, Y. Ohta, Y. Fuigita, K. Yamamoto, and M. Tsuji, ACS Appl. Mater. Interfaces 7, 5265 (2015).
H. Henck, Z. B. Aziza, D. Pierucci, F. Laorine, F. Reale, P. Palczynski, J. Chaste, M. G. Silly, F. Bertran, P. le Fèvre, E. Lhuillier, T. Wakamura, C. Mattevi, J. E. Rault, M. Calandra, and A. Ouerghi, Phys. Rev. B 97, 155421 (2018).
B. L. Li, J. Wang, H. L. Zou, S. Garaj, C. T. Lim, J. Xie, N. B. Li, and D. T. Leong, Adv. Funct. Mater. 26, 7034 (2016).
S. Barua, H. S. Dutta, S. Gogoi, R. Devi, and R. Khan, ACS Appl. Nanomater. 1, 2 (2017).
N. Lanzillo, A. G. Birdwell, M. Amani, F. J. Crowne, P. B. Shah, S. Najmaei, Z. Liu, P. M. Ajayan, J. Lou, M. Dubey, S. K. Nayak, and T. P. O’Regan, Appl. Phys. Lett. 103, 093102 (2013).
H. Liu, J. Lu, K. Ho, Z. Hu, Z. Dang, A. Carvlho, H. R. Tan, E. S. Tok, and C. H. Sow, Nano Lett. 16, 5559 (2016).
P. Liu, T. Luo, J. Xing, H. Xu, H. Hao, H. Liu, and J. Dong, Nanoscale Res. Lett. 12, 558 (2017).
Y. Jung, E. Ji, A. Capasso, and G. H. Lee, J. Korean Ceram. Soc. 56, 24 (2019).
S. Wang, Y. Rong, Y. Fan, M. Pacios, H. Bhasharan, K. He, and J. H. Warner, Chem. Mater. 26, 6371 (2014).
S. A. Kukushkin and A. V. Osipov, Phys. Usp. 41, 983 (1998).
S. Mignuzzi, A. J. Pollard, N. Bonini, B. Brennan, I. S. Golmore, M. A. Pimenta, D. Richards, and D. Roy, Phys. Rev. B 91, 195411 (2015).
S. Y. Chen, C. Zeng, M. S. Ruhrer, and J. Yan, Nano Lett. 15, 2526 (2015).
G. Plechinger, S. Heydrich, J. Fuhrer, J. Eroms, D. Weiss, C. Schüller, and T. Korn, Appl. Phys. Lett. 101, 101906 (2012).
Y. Zhang, Y. Zhang, Q. Ji, J. Ju, H. Yuan, J. Shi, T. Gao, D. Ma, M. Liu, Y. Chen, X. Song, H. Y. Hwang, Y. Cui, and Z. Liu, ACS Nano 7, 8963 (2013).
Y. Niu, S. Gonzalez-Abad, R. Frisenda, P. Marauhn, M. Drüppel, P. Gant, R. Schmidt, N. S. Taghavi, D. Barcons, A. J. Molina-Mendoza, S. Michaelis de Vasconcelos, R. Bratschitsch, D. Perez De Lara, M. Rohlfing, and A. Castellanos-Gomez, Nanomater. 8, 725 (2018).
W. Zhao, Z. Ghorannevis, K. K. Amara, J. R. Pang, M. Toh, X. Zhang, C. Kloc, P. H. Tan, and G. Eda, Nanoscale 5, 9677 (2013).
M. Okada, T. Sawazaki, K. Watanabe, T. Taniguch, H. Hibino, H. Shinohara, and R. Kitaura, ACS Nano 8, 8273 (2014).
H. Zeng, G.-B. Liu, J. Dai, Y. Yan, B. Zhu, R. He, L. Xie, S. Xu, X. Chen, W. Yao, and X. Cui, Sci. Rep. 3, 1608 (2013).
A. Kuc, N. Zibouche, and T. Heine, Phys. Rev. B 83, 245213 (2011).
Y. Kim, H. Bark, B. Kang, and C. Lee, ACS Appl. Mater. Interfaces 11, 12613 (2019).
K. M. Nazif, A. Kumar, M. T. M. de Menezes, and K. Saraswat, Proc. SPIE 11126, 1112606 (2019).
J. Y. Chen, L. Liu, C. X. Li, and J. P. Xu, Chin. Phys. Lett. 36, 037301 (2019).
D. Dumcenco, D. Ovchinnikov, K. Marinov, P. Lazić, M. Gilbertini, N. Marzari, O. L. Sanchez, Y.-C. Kung, D. Krsnozhon, M.-W. Chen, S. Bertolazzi, P. Gillet, A. Fontcuberta i Morral, A. Redonovic, and A. Kis, ACS Nano 9, 4611 (2015).
C. Cong, J. Shang, X. Wu, B. Cao, N. Peimyoo, C. Qiu, L. Sun, and T. Yu. Adv, Opt. Mater. 2, 131 (2014).
Funding
This study was supported by the Russian Foundation for Basic Research, projects nos. 18-42-140005 and 19-32-50034_mol_nr.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
The authors declare that they have no conflict of interest.
Additional information
Translated by E. Bondareva
Rights and permissions
About this article
Cite this article
Smagulova, S.A., Vinokurov, P.V., Semenova, A.A. et al. Study of the Properties of Two-Dimensional MoS2 and WS2 Films Synthesized by Chemical-Vapor Deposition. Semiconductors 54, 454–464 (2020). https://doi.org/10.1134/S1063782620040193
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1134/S1063782620040193
Keywords:
- graphene
- molybdenum and tungsten disulfides
- CVD method
- optical properties