Study of the Properties of Two-Dimensional MoS2 and WS2 Films Synthesized by Chemical-Vapor Deposition

Abstract

Molybdenum- and tungsten-disulfide films are synthesized by chemical-vapor deposition. The set of optimal synthesis parameters (temperature, time, and amount and ratio of precursors) is established at which MoS2 domains with maximum lateral sizes of up to 250 μm on sapphire and MoS2 and WS2 domains up to 80 μm in size on SiO2 can be grown. Domain intergrowth leads to the formation of homogeneous single-layer MoS2 films. The Raman spectra of the synthesized films contain two characteristic peaks corresponding to the atomic vibrations in MoS2 and WS2. Photoluminescence of the single-layer and bilayer MoS2 films with a maximum intensity of 670 ± 2 nm and of the single-layer WS2 films with a maximum intensity of 630 ± 2 nm is detected. The photoluminescence spectral maps (the dependences of the photoluminescence intensity on the luminescence and excitation-light wavelengths) are measured. According to the measured data, the photoluminescence excitation spectrum of MoS2 has a maximum at 350 ± 5 nm and the photoluminescence excitation spectrum of WS2 has a maximum at 330 ± 5 nm. The IV characteristics of the synthesized films are photosensitive in the visible spectral range.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.

REFERENCES

  1. 1

    I. V. Antonova, Semiconductors 50, 66 (2016).

    ADS  Article  Google Scholar 

  2. 2

    Y. Zhang, Y. Yao, M. G. Sendeku, L. Yin, X. Zhan, F. Wang, and J. He, Adv. Mater. 31, 1901694 (2019).

    Article  Google Scholar 

  3. 3

    W. Zhao, R. M. Ribeiro, M. Toh, A. Carvalho, C. Kloc, A. H. Castro Neto, and G. Eda, Nano Lett. 13, 5627 (2013).

    ADS  Article  Google Scholar 

  4. 4

    K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, Phys. Rev. Lett. 105, 136805 (2010).

    ADS  Article  Google Scholar 

  5. 5

    W. Zhao, Z. Gjprnnevis, L. Chu, M. Toh, C. Kloc, P. H. Tan, and G. Eda, ACS Nano 7, 791 (2012).

    Article  Google Scholar 

  6. 6

    Q. Zeng and Z. Liu, Adv. Electron. Mater. 4, 1700335 (2018).

    Article  Google Scholar 

  7. 7

    H. R. Gutiérrez, N. Perea-López, A. L. Elías, A. Berkdemir, B. Wang, R. Lv, F. López-Urías, V. H. Crespi, H. Terrones, and M. Terrons, Nano Lett. 13, 3447 (2012).

    ADS  Article  Google Scholar 

  8. 8

    G. Z. Magda, J. Petö, G. Dobrik, G. Hwang, L. P. Biró, and L. Tpasztó, Sci. Rep. 5, 14714 (2015).

    ADS  Article  Google Scholar 

  9. 9

    A. Berkdemir, H. R. Gutiérrez, A. R. Botello-Méndez, N. Perea-López, A. L. Elías, C.-I. Chia, B. Wang, V. H. Crespi, F. López-Urías, J.-C. Carlier, H. Terrones, and M. Terrones, Sci. Rep. 3, 1755 (2013).

    Article  Google Scholar 

  10. 10

    Y. Zhan, Z. Liu, S. Najmaei, P. M. Ajayan, and J. Lou, Small 8, 966 (2012).

    Article  Google Scholar 

  11. 11

    S. L. Wong, H. Liu, and D. Chi, Progr. Cryst. Growth Charact. Mater. 62 (3), 9 (2016).

    Article  Google Scholar 

  12. 12

    A. Özden, F. Ay, C. Sevik, and N. K. Perkgöz, Jpn. J. Appl. Phys. 56 (6S1), 06GG05 (2017).

  13. 13

    N. Kumar, R. Tomar, N. Wadehra, M. M. Devi, B. Prakash, and S. Chakraverty, Cryst. Res. Technol. 53, 1800002 (2018).

    Article  Google Scholar 

  14. 14

    Y. Gao, Z. Liu, D.-M. Sun,  L. Huang,  L.-P. Ma, L.-C. Yin, T. Ma, Z. Zhang, X.-L. Ma, L.-M. Peng, H.-M. Cheng, and W. Ren, Nat. Commun. 6, 8569 (2015).

    ADS  Article  Google Scholar 

  15. 15

    Y. Zhang, J. Shi, G. Han, M. Li, Q. Ji, D. Ma, Y. Zhang, C. Li, X. Lang, Y. Zhang, and Z. Liu, Nano Res. 8, 2881 (2015).

    Article  Google Scholar 

  16. 16

    Q. Ji, Y. Zhang, Y. Zhang, and Z. Liu, Chem. Soc. Rev. 44, 2587 (2015).

    Article  Google Scholar 

  17. 17

    L. Su, Y. Yu, L. Cao, and Y. Zang, Nano Res. 8, 2686 (2015).

    Article  Google Scholar 

  18. 18

    A. K. Geim and I. V. Grigorieva, Nature (London, U.K.) 499, 419 (2013).

    Article  Google Scholar 

  19. 19

    H. Ago, H. Endo, P. Solís-Fernándesz, R. Takozawa, Y. Ohta, Y. Fuigita, K. Yamamoto, and M. Tsuji, ACS Appl. Mater. Interfaces 7, 5265 (2015).

    Article  Google Scholar 

  20. 20

    H. Henck, Z. B. Aziza, D. Pierucci, F. Laorine, F. Reale, P. Palczynski, J. Chaste, M. G. Silly, F. Bertran, P. le Fèvre, E. Lhuillier, T. Wakamura, C. Mattevi, J. E. Rault, M. Calandra, and A. Ouerghi, Phys. Rev. B 97, 155421 (2018).

    ADS  Article  Google Scholar 

  21. 21

    B. L. Li, J. Wang, H. L. Zou, S. Garaj, C. T. Lim, J. Xie, N. B. Li, and D. T. Leong, Adv. Funct. Mater. 26, 7034 (2016).

    Article  Google Scholar 

  22. 22

    S. Barua, H. S. Dutta, S. Gogoi, R. Devi, and R. Khan, ACS Appl. Nanomater. 1, 2 (2017).

    Google Scholar 

  23. 23

    N. Lanzillo, A. G. Birdwell, M. Amani, F. J. Crowne, P. B. Shah, S. Najmaei, Z. Liu, P. M. Ajayan, J. Lou, M. Dubey, S. K. Nayak, and T. P. O’Regan, Appl. Phys. Lett. 103, 093102 (2013).

    ADS  Article  Google Scholar 

  24. 24

    H. Liu, J. Lu, K. Ho, Z. Hu, Z. Dang, A. Carvlho, H. R. Tan, E. S. Tok, and C. H. Sow, Nano Lett. 16, 5559 (2016).

    ADS  Article  Google Scholar 

  25. 25

    P. Liu, T. Luo, J. Xing, H. Xu, H. Hao, H. Liu, and J. Dong, Nanoscale Res. Lett. 12, 558 (2017).

    ADS  Article  Google Scholar 

  26. 26

    Y. Jung, E. Ji, A. Capasso, and G. H. Lee, J. Korean Ceram. Soc. 56, 24 (2019).

    Article  Google Scholar 

  27. 27

    S. Wang, Y. Rong, Y. Fan, M. Pacios, H. Bhasharan, K. He, and J. H. Warner, Chem. Mater. 26, 6371 (2014).

    Article  Google Scholar 

  28. 28

    S. A. Kukushkin and A. V. Osipov, Phys. Usp. 41, 983 (1998).

    ADS  Article  Google Scholar 

  29. 29

    S. Mignuzzi, A. J. Pollard, N. Bonini, B. Brennan, I. S. Golmore, M. A. Pimenta, D. Richards, and D. Roy, Phys. Rev. B 91, 195411 (2015).

    ADS  Article  Google Scholar 

  30. 30

    S. Y. Chen, C. Zeng, M. S. Ruhrer, and J. Yan, Nano Lett. 15, 2526 (2015).

    ADS  Article  Google Scholar 

  31. 31

    G. Plechinger, S. Heydrich, J. Fuhrer, J. Eroms, D. Weiss, C. Schüller, and T. Korn, Appl. Phys. Lett. 101, 101906 (2012).

    ADS  Article  Google Scholar 

  32. 32

    Y. Zhang, Y. Zhang, Q. Ji, J. Ju, H. Yuan, J. Shi, T. Gao, D. Ma, M. Liu, Y. Chen, X. Song, H. Y. Hwang, Y. Cui, and Z. Liu, ACS Nano 7, 8963 (2013).

    Article  Google Scholar 

  33. 33

    Y. Niu, S. Gonzalez-Abad, R. Frisenda, P. Marauhn, M. Drüppel, P. Gant, R. Schmidt, N. S. Taghavi, D. Barcons, A. J. Molina-Mendoza, S. Michaelis de Vasconcelos, R. Bratschitsch, D. Perez De Lara, M. Rohlfing, and A. Castellanos-Gomez, Nanomater. 8, 725 (2018).

    Article  Google Scholar 

  34. 34

    W. Zhao, Z. Ghorannevis, K. K. Amara, J. R. Pang, M. Toh, X. Zhang, C. Kloc, P. H. Tan, and G. Eda, Nanoscale 5, 9677 (2013).

    ADS  Article  Google Scholar 

  35. 35

    M. Okada, T. Sawazaki, K. Watanabe, T. Taniguch, H. Hibino, H. Shinohara, and R. Kitaura, ACS Nano 8, 8273 (2014).

    Article  Google Scholar 

  36. 36

    H. Zeng, G.-B. Liu, J. Dai, Y. Yan, B. Zhu, R. He, L. Xie, S. Xu, X. Chen, W. Yao, and X. Cui, Sci. Rep. 3, 1608 (2013).

    Article  Google Scholar 

  37. 37

    A. Kuc, N. Zibouche, and T. Heine, Phys. Rev. B 83, 245213 (2011).

    ADS  Article  Google Scholar 

  38. 38

    Y. Kim, H. Bark, B. Kang, and C. Lee, ACS Appl. Mater. Interfaces 11, 12613 (2019).

    Article  Google Scholar 

  39. 39

    K. M. Nazif, A. Kumar, M. T. M. de Menezes, and K. Saraswat, Proc. SPIE 11126, 1112606 (2019).

    Google Scholar 

  40. 40

    J. Y. Chen, L. Liu, C. X. Li, and J. P. Xu, Chin. Phys. Lett. 36, 037301 (2019).

    ADS  Article  Google Scholar 

  41. 41

    D. Dumcenco, D. Ovchinnikov, K. Marinov, P. Lazić, M. Gilbertini, N. Marzari, O. L. Sanchez, Y.-C. Kung, D. Krsnozhon, M.-W. Chen, S. Bertolazzi, P. Gillet, A. Fontcuberta i Morral, A. Redonovic, and A. Kis, ACS Nano 9, 4611 (2015).

    Article  Google Scholar 

  42. 42

    C. Cong, J. Shang, X. Wu, B. Cao, N. Peimyoo, C. Qiu, L. Sun, and T. Yu. Adv, Opt. Mater. 2, 131 (2014).

    Article  Google Scholar 

Download references

Funding

This study was supported by the Russian Foundation for Basic Research, projects nos. 18-42-140005 and 19-32-50034_mol_nr.

Author information

Affiliations

Authors

Corresponding author

Correspondence to S. A. Smagulova.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by E. Bondareva

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Smagulova, S.A., Vinokurov, P.V., Semenova, A.A. et al. Study of the Properties of Two-Dimensional MoS2 and WS2 Films Synthesized by Chemical-Vapor Deposition. Semiconductors 54, 454–464 (2020). https://doi.org/10.1134/S1063782620040193

Download citation

Keywords:

  • graphene
  • molybdenum and tungsten disulfides
  • CVD method
  • optical properties