Skip to main content
Log in

Fabrication and Analysis of the Current Transport Mechanism of Ni/n-GaN Schottky Barrier Diodes through Different Models

  • ELECTRONIC PROPERTIES OF SEMICONDUCTORS
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

The current transport mechanism of indigenously fabricated Ni/n-GaN Schottky barrier diodes (SBDs) has been analysed using the current–voltage (IV) and capacitance–voltage (CV) measurements. Various models like Rhoderick’s method, Cheung’s method, Norde’s method, modified Norde’s method, Hernandez’s method, and Chattopadhyay’s method have been used to extract the different electric parameters from the IV curve. A comparison has been made between the various electrical parameters such as ideality factor, barrier height, and series resistance, which are extracted from the forward bias IV curve of Ni/n-GaN SBDs. The carrier concentration of the substrate and the barrier height is obtained from CV characteristics of Ni/n-GaN SBDs. We observe from the reverse current characteristics that the Ni/n-GaN SBDs show the dominance of Schottky emission in intermediate and higher voltages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.

Similar content being viewed by others

REFERENCES

  1. L. M. Tolbert, B. Ozpineci, S. K. Islam, and M. S. Chinthavali, Semiconductors 1, 3 (2003).

    Google Scholar 

  2. S. J. Pearton and C. Kuo, MRS Bull. 22 (2), 17 (1997).

    Article  Google Scholar 

  3. A. C. Schmitz, A. T. Ping, M. A. Khan, Q. Chen, J. W. Yang, and I. Adesida, Semicond. Sci. Technol. 11, 1464 (1996).

    Article  ADS  Google Scholar 

  4. M. L. Gardner, Master’s Thesis (Naval Postgraduate School, Monterey, USA, 2016).

  5. T. I. Kim, Y. H. Jung, J. Song, D. Kim, Y. Li, H. Kim, S. Song, J. J. Wierer, H. Pao, Y. Huang, and J. A. Rogers, Small 8, 1643 (2012).

    Article  Google Scholar 

  6. Q. Zheng, C. Li, A. Rai, J. H. Leach, D. A. Broido, and D. G. Cahill, Phys. Rev. Mater. 3, 014601 (2019).

    Article  Google Scholar 

  7. Y. Chen, Z. Zhang, H. Jiang, Z. Li, G. Miao, H. Song, H. Liqin, and T. Guo, Nanoscale 11, 1351 (2019).

    Article  Google Scholar 

  8. E. H. Rhoderick and R. H. Williams, Metal–Semiconductor Contacts, 2nd ed. (Clarendon, Oxford, 1988), p. 54.

    Google Scholar 

  9. S. K. Cheung and N. W. Cheung, Appl. Phys. Lett. 49, 85 (1986).

    Article  ADS  Google Scholar 

  10. H. Norde, J. Appl. Phys. 50, 5052 (1979).

    Article  ADS  Google Scholar 

  11. R. T. Tung, Mater. Sci. Eng. R 35, 1 (2001).

    Article  Google Scholar 

  12. M. P. Hernández, C. F. Alonso, and J. L. Pena, J. Phys. D: Appl. Phys. 34, 1157 (2001).

    Article  ADS  Google Scholar 

  13. S. Chattopadhyay, L. K. Bera, S. K. Ray, P. K. Bose, and C. K. Maiti, Thin Solid Films 335, 142 (1998).

    Article  ADS  Google Scholar 

  14. H. C. Card and E. H. Rhoderick, J. Phys. D: Appl. Phys. 4, 1589 (1971).

    Article  ADS  Google Scholar 

  15. A. R. Arehart, B. Moran, J. S. Speck, U. K. Mishra, S. P. Ben Baars, and S. A. Ringel, J. Appl. Phys. 100, 023709 (2016).

    Article  ADS  Google Scholar 

  16. H. Kim, M. Schuette, H. Jung, J. Song, J. Lee, W. Lu, and J. C. Mabon, Appl. Phys. Lett. 89, 053516 (2006).

    Article  ADS  Google Scholar 

  17. S. Y. Karpov, D. A. Zakheim, W. V. Lundin, A. V. Sakharov, E. E. Zavarin, P. N. Burnkov, E. Y. Lundina, and A. F. Tsatsulnikov, Semicond. Sci. Technol. 33, 025009 (2018).

    Article  ADS  Google Scholar 

  18. P. F. Ruths, S. Ashok, S. J. Fonash, and D. J. M. Ruths, IEEE Trans. Electron Dev. 28, 1003 (1981).

    Article  ADS  Google Scholar 

  19. A. Kumar, S. Vinayak, and R. Singh, in Proceedings of the Symposium on Semiconductor Materials and Devices Semiconductors, Vadodara, 2011, J. Nano-Electron. Phys. 3, 671 (2011).

  20. Y. S. Ocak, M. Kulakci, T. Kılıçoğlu, R. Turan, and K. Akkılıç, Synth. Met. 159, 1603 (2009).

    Article  Google Scholar 

  21. V. R. Reddy, V. Janardhanam, C. H. Leem, and C. J. Choi, Superlatt. Microstruct. 67, 242 (2014).

    Article  ADS  Google Scholar 

  22. R. D. Gould and T. S. Shafai, Thin Solid Films 373, 89 (2000).

    Article  ADS  Google Scholar 

  23. C. H. Han and K. Kim, IEEE Electron Dev. Lett. 12, 74 (1991).

    Article  ADS  Google Scholar 

  24. D. K. Schroder, Semiconductor Material and Device Characterization, 3rd ed. (Wiley, Hoboken, 2006), p. 89.

    Google Scholar 

  25. J. Lin, S. Banerjee, J. Lee, and C. Teng, Electron Dev. Lett. 11, 191 (1990).

    Article  ADS  Google Scholar 

  26. T. S. Shafai and T. D. Anthopoulos, Thin Solid Films 398, 361 (2001).

    Article  ADS  Google Scholar 

  27. S. Altındal, S. Karadeniz, N. Tuğluoğlu, and A. Tataroğlu, Solid-State Electron. 47, 1847 (2003).

    Article  ADS  Google Scholar 

  28. V. R. Reddy, B. Asha, and C. J. Choi, J. Semicond. 38, 064001 (2017).

  29. Y. P. Song, R. L. V. Meirhaeghe, W. H. Laflere, and F. Cardon, Solid-State Electron. 29, 633 (1986).

    Article  ADS  Google Scholar 

  30. J. H. Werner and H. H. Güttler, J. Appl. Phys. 69, 1522 (1991).

    Article  ADS  Google Scholar 

  31. B. Boyarbay, H. Cetin, M. Kaya, and E. Ayyildiz, Microelectron. Eng. 85, 721 (2008).

    Article  Google Scholar 

  32. C. Fontaine, T. Okumura, and K. N. Tu, J. Appl. Phys. 54, 1404 (1983).

    Article  ADS  Google Scholar 

  33. R. Padma, G. Nagaraju, V. R. Reddy, and C. J. Choi, Thin Solid Films 598, 236 (2016).

    Article  ADS  Google Scholar 

  34. L. Geng, F. A. Ponce, S. Tanaka, and Y. Nakagawa, Phys. Status Solidi A 188, 803 (2001).

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful for the advice and assistance of Dr. R.N. Srinivas, Department of Physics, MNIT Jaipur, and Dr. K. Asokan, IUAC, New Delhi, concerned with Schottky diodes fabrication and electrical characterization of the Schottky diodes.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Krishnaveni.

Ethics declarations

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, S., Kumar, M.V. & Krishnaveni, S. Fabrication and Analysis of the Current Transport Mechanism of Ni/n-GaN Schottky Barrier Diodes through Different Models. Semiconductors 54, 169–175 (2020). https://doi.org/10.1134/S1063782620020141

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063782620020141

Keywords:

Navigation