Skip to main content

Ab Initio Study of Absorption Resonance Correlations between Nanotubes and Nanoribbons of Graphene and Hexagonal Boron Nitride

Abstract

Density functional theory calculations are performed for the electronic band structures and optical absorption spectra of the zigzag nanoribbons and armchair nanotubes of graphene and hexagonal boron nitride as well as hybrid tubular structures obtained by embedding two dimer lines of B and N atoms into an armchair nanotube. Linear correlation coefficient analysis is carried out to quantitatively investigate relations between energies of absorption resonances in these tube-ribbon pairs. Despite the large disparity in the energy band gaps of some of these structures, our results show a high degree of correlation (r > 0.85 with >95% confidence level) between them.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.

REFERENCES

  1. R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novose-lov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, Science (Washington, DC, U. S.) 320, 1308 (2008).

    ADS  Article  Google Scholar 

  2. Q. Li, M. Liu, Y. Zhang, and Z. Liu, Small 12, 32 (2016).

    Article  Google Scholar 

  3. P. R. Wallace, Phys. Rev. 71, 622 (1947).

    ADS  Article  Google Scholar 

  4. A. C. Neto, F. Guinea, N. M. Peres, K. S. Novoselov, and A. K. Geim, Rev. Mod. Phys. 81, 109 (2009).

    ADS  Article  Google Scholar 

  5. K. S. Novoselov, S. V. Morozov, T. M. G. Mohinddin, L. A. Ponomarenko, D. C. Elias, R. Yang, I. I. Barbolina, P. Blake, T. J. Booth, D. Jiang, and J. Giesbers, Phys. Status Solidi B 244, 4106 (2007).

    ADS  Article  Google Scholar 

  6. A. Celis, M. N. Nair, A. Taleb-Ibrahimi, E. H. Conrad, C. Berger, W. A. de Heer, and A. Tejeda, J. Phys. D: Appl. Phys. 49, 143001 (2016).

    ADS  Article  Google Scholar 

  7. S. Zhang, L. Kang, X. Wang, L. Tong, L. Yang, Z. Wang, K. Qi, S. Deng, Q. Li, X. Bai, F. Ding, and J. Zhang, Nature (London, U.K.) (2017).

  8. Q. Sun, R. Zhang, J. Qiu, R. Liu, and W. Xu, Adv. Mater. 30, 1705630 (2018).

    Article  Google Scholar 

  9. K. Watanabe, T. Taniguchi, and H. Kanda, Nat. Materials 3, 404 (2004).

    ADS  Article  Google Scholar 

  10. N. Alem, Q. M. Ramasse, C. R. Seabourne, O. V. Yazyev, K. Erickson, M. C. Sarahan, C. Kisielowski, A. J. Scott, S. G. Louie, and A. Zettl, Phys. Rev. Lett. 109, 205502 (2012).

    ADS  Article  Google Scholar 

  11. A. Pakdel, Y. Bando, and D. Golberg, Chem. Soc. Rev. 43, 934 (2014).

    Article  Google Scholar 

  12. Z. Liu, L. Ma, G. Shi, W. Zhou, Y. Gong, S. Lei, X. Yang, J. Zhang, J. Yu, K. P. Hackenberg, and A. Babakhani, Nat. Nanotechnol. 8, 119 (2013).

    ADS  Article  Google Scholar 

  13. Z. Zhang and W. Guo, Phys. Rev. B 77, 075403 (2008).

    ADS  Article  Google Scholar 

  14. J. Wang, R. Zhao, and Z. Liu, Small 9, 1373 (2013).

    Article  Google Scholar 

  15. D. Golberg, Y. Bando, C. C. Tang, and C. Y. Zhi, Adv. Mater. 19, 2413 (2007).

    Article  Google Scholar 

  16. C.-H. Park and S. G. Louie, Nano Lett. 8, 2200 (2008);

    ADS  Article  Google Scholar 

  17. F.-L. Shyu, Phys. B (Amsterdam, Neth.) 452, 7 (2014).

  18. V.-T. Tran, J. Saint-Martin, and P. Dollfus, Appl. Phys. Lett. 105, 073114 (2014).

    ADS  Article  Google Scholar 

  19. L. Chen, L. He, H. S. Wang, H. Wang, S. Tang, C. Cong, H. Xie, L. Li, H. Xia, T. Li, T. Wu, D. Zhang, L. Deng, T. Yu, X. Xie, and M. Jiang, Nat. Commun. 8, 14703 (2017).

    ADS  Article  Google Scholar 

  20. D. Chen, R. Qiao, X. Xu, W. Dong, L. Wang, R. Ma, C. Liu, Z. Zhang, M. Wu, L. Liu, L. Bao, H.-T. Wang, P. Gao, K. Liu, and D. Yu, Nanoscale 11, 4226 (2019).

    Article  Google Scholar 

  21. A. Todri-Sanial and C. S. Tan, Physical Design for 3D Integrated Circuits (CRC, Taylor and Francis Group, FL, 2016).

    Google Scholar 

  22. V. A. Saroka, M. V. Shuba, and M. E. Portnoi, Phys. Rev. B 95, 155438 (2017).

    ADS  Article  Google Scholar 

  23. V. A. Saroka, K. G. Batrakov, V. A. Demin, and L. A. Chernozatonskii, J. Phys.: Condens. Matter 27, 145305 (2015)

    ADS  Google Scholar 

  24. V. A. Saroka, A. L. Pushkarchuk, S. A. Kuten, and M. E. Portnoi, J. Saudi Chem. Soc. 22, 985 (2018).

    Article  Google Scholar 

  25. M. E. Portnoi, V. A. Saroka, R. R. Hartmann, and O. V. Kibis, in Proceedings of the 2015 IEEE Computer Society Annual Symposium on VLSI (IEEE, 2015), p. 456.

  26. J. Deslippe, C. D. Spataru, D. Prendergast, and S. G. Louie, Nano Lett. 7, 1626 (2007).

    ADS  Article  Google Scholar 

  27. K. Liu, J. Deslippe, F. Xiao, R. B. Capaz, X. Hong, S. Aloni, A. Zettl, W. Wang, X. Bai, S. G. Louie, E. Wang, and F. Wang, Nat. Nanotechnol. 7, 325 (2012).

    ADS  Article  Google Scholar 

  28. L. A. Chernozatonskii, Y. K. Shimkus, and I. V. Stankevich, Phys. Lett. A 240, 105 (1998).

    ADS  Article  Google Scholar 

  29. L. A. Chernozatonskii, V. A. Demin, and A. A. Artyukh, JTEP Lett. 104, 43 (2016).

    ADS  Article  Google Scholar 

  30. L. A. Chernozatonskii, V. A. Demin, and S. Bellucci, Sci. Rep. 6, 38029 (2016).

    ADS  Article  Google Scholar 

  31. P. Giannozzi, O. Andreussi, T. Brumme, O. Bunau, M. Buongiorno Nardelli, M. Calra, R. Car, C. Cavazzoni, D. Ceresoli, M. Cococcioni, N. Colonna, I. Carnimeo, A. Dal Corso, S. de Gironcoli, P. Delugas, et al., J. Phys.: Condens. Matter 29, 465901 (2017).

    Google Scholar 

  32. D. R. Hamann, M. Schlüter, and C. Chiang, Phys. Rev. Lett. 43, 1494 (1979).

    ADS  Article  Google Scholar 

  33. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).

    ADS  Article  Google Scholar 

  34. V. A. Saroka, H. Abdelsalam, V. A. Demin, D. Grassano, S. A. Kuten, A. L. Pushkarchuk, and O. Pulci, Semiconductors 52, 1890 (2018).

    ADS  Article  Google Scholar 

  35. H. Ajiki and T. Ando, Phys. B: Condens. Matter 201, 349 (1994).

    ADS  Article  Google Scholar 

  36. M. Bonamente, Statistics and Analysis of Scientific Data (Springer Science, New York, 2013), pp. 154, 252.

  37. E. B. Barros, A. Jorio, G. G. Samsonidze, R. B. Capaz, A. G. Souza Filho, J. Mendes Filho, G. Dresselhaus, and M. S. Dresselhausm, Phys. Rep. 431, 261 (2006).

    ADS  Article  Google Scholar 

  38. R. R. Hartmann, V. A. Saroka, and M. E. Portnoi, J. Appl. Phys. 125, 151607 (2019).

    ADS  Article  Google Scholar 

  39. M. E. Portnoi, M. Rosenau da Costa, O. V. Kibis, and I. A. Shelykh, Int. J. Mod. Phys. B 23, 2846 (2009).

    ADS  Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to A.R. Villagracia for providing the computing workstation in STRC, De La Salle University—Manila, and to C.A. Downing, O. Pulci and D. Grassano for their helpful discussions.

Funding

V.A.S. acknowledges the financial support of EU H2020 RISE project CoExAN (grant no. H2020-644076) and the RCN (grant no. 274853), partly through its CoE funding scheme (project no. 262633, “QuSpin”).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Renebeth B. Payod or Vasil A. Saroka.

Ethics declarations

The authors declare no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Payod, R.B., Saroka, V.A. Ab Initio Study of Absorption Resonance Correlations between Nanotubes and Nanoribbons of Graphene and Hexagonal Boron Nitride. Semiconductors 53, 1929–1934 (2019). https://doi.org/10.1134/S1063782619140161

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063782619140161

Keywords:

  • nanoribbons
  • nanotubes
  • optical absorption
  • density functional theory
  • Pearson correlation coefficient