Skip to main content
  • Published:

Coherence Dynamics of the Exciton-Polariton System in GaAs Microcavities under Pulse Resonant Photoexcitation


It is found that exciton-polariton systems resonantly excited in GaAs semiconductor microcavities by coherent picosecond laser pulses inherit the high coherence of the laser beam and retain it for their lifetime (>100 ps), while the coherence-formation time in polariton systems resonantly excited by incoherent pulses without excitation of the exciton reservoir exceeds 200 ps.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.


  1. J. Kasprzak, J. M. Richard, S. Kundermann, A. Baas, P. Jeambrun, J. M. J. Keeling, F. M. Marchetti, M. H. Szymánska, R. André, J. L. Staehli, V. Savona, P. Littlewood, B. Deveaud-Plédran, and Le Si Dang, Nature (London, UK) 443, 409 (2006).

    ADS  Article  Google Scholar 

  2. R. Balili, V. Hartwell, D. Snoke, L. Pfeiffer, and K. West, Science (Washington, DC, US) 316, 1007 (2007).

    ADS  Article  Google Scholar 

  3. A. V. Kavokin, J. J. Baumberg, G. Malpuech, and F. P. Laussy, Microcavities (Oxford Univ. Press, Oxford, 2007).

    Book  Google Scholar 

  4. D. Sanvitto and V. Timofeev, Exciton Polaritons in Microcavities (Springer, Berlin, 2012).

    Google Scholar 

  5. A. Bramati and M. Modugno, Physics of Quantum Fluids (Springer, Berlin, 2013).

    Book  Google Scholar 

  6. K. G. Lagoudakis, M. Wouters, M. Richard, A. Baas, I. Carusotto, R. André, Le Si Dang, and B. Deveaud-Plédran, Nat. Phys. 4, 706 (2008).

    Article  Google Scholar 

  7. A. V. Larionov, V. D. Kulakovskii, S. Höfling, C. Schneider, L. Worschech, and A. Forchel, Phys. Rev. Lett. 105, 256401 (2010).

    ADS  Article  Google Scholar 

  8. K. G. Lagoudakis, B. Pietka, M. Wouters, R. André, and B. Deveaud-Plédran, Phys. Rev. Lett. 105, 120403 (2010).

    ADS  Article  Google Scholar 

  9. V. V. Belykh, N. N. Sibeldin, V. D. Kulakovskii, M. M. Glazov, M. A. Semina, C. Schneider, S. Höfling, M. Kamp, and A. Forchel, Phys. Rev. Lett. 110, 137402 (2013).

    ADS  Article  Google Scholar 

  10. D. A. Mylnikov, V. V. Belykh, N. N. Sibeldin, V. D. Kulakovskii, C. Schneider, S. Hofling, M. Kamp, and A. Forchel, JETP Lett. 101, 513 (2015).

    ADS  Article  Google Scholar 

  11. J. Schmutzler, T. Kazimierczuk, O. Bayraktar, M. Assmann, M. Bayer, S. Brodbeck, M. Kamp, C. Schneider, and S. Höfling, Phys. Rev. B 89, 115119 (2014).

    ADS  Article  Google Scholar 

  12. N. A. Gippius, I. A. Shelykh, D. D. Solnyshkov, S. S. Gavrilov, Y. Rubo, A. V. Kavokin, S. G. Tikhodeev, and G. Malpuech, Phys. Rev. Lett. 98, 236401 (2007).

    ADS  Article  Google Scholar 

  13. I. A. Shelykh, T. C. H. Liew, and A. V. Kavokin, Phys. Rev. Lett. 100, 116401 (2008).

    ADS  Article  Google Scholar 

  14. T. K. Paraïso, M. Wouters, Y. Leger, F. Morier-Genoud, and B. Deveaud-Plédran, Nat. Mater. 9, 655 (2010).

    ADS  Article  Google Scholar 

  15. S. S. Gavrilov, A. V. Sekretenko, N. A. Gippius, C. Schneider, S. Höfling, M. Kamp, A. Forchel, and V. D. Kulakovskii, Phys. Rev. B 87, 201303(R) (2013).

  16. A. V. Sekretenko, S. S. Gavrilov, and V. D. Kulakovskii, Phys. Rev. B 88, 195302 (2013).

    ADS  Article  Google Scholar 

  17. M. Vladimirova, S. Cronenberger, D. Scalbert, K. V. Kavokin, A. Miard, A. Lemaítre, J. Bloch, D. Solnyshkov, G. Malpuech, and A. V. Kavokin, Phys. Rev. B 82, 075301 (2010).

    ADS  Article  Google Scholar 

  18. D. N. Krizhanovskii, S. S. Gavrilov, A. P. D. Love, D. Sanvitto, N. A. Gippius, S. G. Tikhodeev, V. D. Kulakovskii, D. M. Whittaker, M. S. Skolnick, and J. S. Roberts, Phys. Rev. B 77, 115336 (2008).

    ADS  Article  Google Scholar 

  19. S. S. Gavrilov, A. S. Brichkin, A. A. Demenev, A. A. Dorodnyy, S. I. Novikov, V. D. Kulakovskii, S. G. Tikhodeev, and N. A. Gippius, Phys. Rev. B 85, 075319 (2012).

    ADS  Article  Google Scholar 

  20. A. V. Yulin, O. A. Egorov, F. Lederer, and D. V. Skryabin, Phys. Rev. A 78, 061801(R) (2008).

  21. M. Sich, D. N. Krizhanovskii, M. S. Skolnick, A. V. Gorbach, R. Hartley, D. V. Skryabin, E. A. Cerda-Mendez, K. Biermann, R. Hey, and P. V. Santos, Nat. Photon. 6, 50 (2012).

    ADS  Article  Google Scholar 

  22. G. Slavcheva, A. V. Gorbach, A. Pimenov, A. G. Vladimirova, and D. V. Skryabin, Opt. Lett. 40, 1787 (2015).

    ADS  Article  Google Scholar 

  23. C. Adrados, A. Amo, T. C. H. Liew, R. Hivet, R. Houdre, E. Giacobino, A. V. Kavokin, and A. Bramati, Phys. Rev. Lett. 105, 216403 (2010).

    ADS  Article  Google Scholar 

  24. V. D. Kulakovskii, S. S. Gavrilov, and N. A. Gippius, JETP Lett. 106, 686 (2017).

    ADS  Article  Google Scholar 

Download references


We are grateful to S.S. Gavrilov and N.A. Gippius for fruitful discussions and P. Savvidis and S. Höfling for the high-Q MC structures.


This study was carried out in the framework of the state assignment for the Institute of Solid State Physics, Russian Academy of Sciences and was supported by the Presidium of the Russian Academy of Sciences, Program No. 9 “Terahertz Optoelectronics and Spintronics”.

Author information

Authors and Affiliations


Corresponding author

Correspondence to V. D. Kulakovskii.

Ethics declarations

The authors declare no conflict of interest.

Additional information

Translated by M. Skorikov

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kulakovskii, V.D., Demenev, A.A. Coherence Dynamics of the Exciton-Polariton System in GaAs Microcavities under Pulse Resonant Photoexcitation. Semiconductors 53, 1308–1313 (2019).

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


  • exciton polaritons
  • Bose–Einstein condensate
  • spatial coherence