Advertisement

Semiconductors

, Volume 53, Issue 9, pp 1154–1157 | Cite as

Study of the Auger Recombination Energy Threshold in a Series of Waveguide Heterostructures with HgTe/Cd0.7Hg0.3Te QWs Near 14 μm

  • V. V. UtochkinEmail author
  • V. Ya. Aleshkin
  • A. A. Dubinov
  • V. I. Gavrilenko
  • N. S. Kulikov
  • M. A. Fadeev
  • V. V. Rumyantsev
  • N. N. Mikhailov
  • S. A. Dvoretskii
  • S. V. Morozov
XXIII INTERNATIONAL SYMPOSIUM “NANOPHYSICS AND NANOELECTRONICS”, NIZHNY NOVGOROD, MARCH 11–14, 2019

Abstract

Stimulated emission from a heterostructure with Hg0.903Cd0.097Te/Cd0.7Hg0.3Te quantum wells, placed in a waveguide layer of wide-gap CdHgTe, is obtained at wavelengths of 14–11 μm and a temperatures of 18–80 K. The threshold Auger recombination energy is calculated for a set of heterostructures with quantum wells of pure HgTe with a band gap of 90 meV (wavelength 14 μm). The possibility of fabricating lasers operating at 14 μm and working temperatures higher than that of liquid nitrogen is demonstrated.

Keywords:

threshold energy Auger recombination HgCdTe 

Notes

ACKNOWLEDGMENTS

The study was carried out on equipment of the unique stand “Femtospektr” at the Collective Use Center, Institute for Physics of Microstructures, Russian Academy of Sciences.

FUNDING

The stimulated emission spectra were examined and the threshold Auger recombination energy was calculated with support from the Russian Science Foundation (grant no. 17-12-01360). Characterization of the structures from changes in the photoluminescence spectra and calculation of the band spectra of the structures were supported by the Ministry of Education and Science of the Russian Federation (MK-4399.2018.2).

CONFLICT OF INTEREST

The authors declare that they have no conflict of interest.

REFERENCES

  1. 1.
    M. S. Vitiello, G. Scalari, B. Williams, and P. de Natale, Opt. Express 23, 5167 (2015).ADSCrossRefGoogle Scholar
  2. 2.
    K. V. Maremyanin, A. V. Ikonnikov, L. S. Bovkun, V. V. Rumyantsev, E. G. Chizhevskii, I. I. Zasavitskii, and V. I. Gavrilenko, Semiconductors 52, 1590 (2018).ADSCrossRefGoogle Scholar
  3. 3.
    V. N. Abakumov, V. I. Perel’, and I. N. Yassievich, Nonradiative Recombination in Semiconductors (Peterb. Inst. Yad. Fiz. AN, St. Petersburg, 1997; North-Holland, Amsterdam, 1991).Google Scholar
  4. 4.
    J. Dimmock, I. Melngailis, and A. Strauss, Phys. Rev. Lett. 16, 1193 (1966).ADSCrossRefGoogle Scholar
  5. 5.
    I. I. Zasavitskii, Tr. FIAN 224, 3 (1993).Google Scholar
  6. 6.
    B. Buttner, C. X. Liu, G. Tkachov, E. G. Novik, C. Brune, H. Buhmann, E. M. Hankiewicz, P. Recher, B. Trauzettel, S. C. Zhang, and L. W. Molenkamp, Nat. Phys. 7, 418 (2011).CrossRefGoogle Scholar
  7. 7.
    S. V. Morozov, V. V. Rumyantsev, M. A. Fadeev, M. S. Zholudev, K. E. Kudryavtsev, A. V. Antonov, A. M. Kadykov, A. A. Dubinov, N. N. Mikhailov, S. A. Dvoretsky, and V. I. Gavrilenko, Appl. Phys. Lett. 111, 192101 (2017).ADSCrossRefGoogle Scholar
  8. 8.
    M. S. Zholudev, A. V. Ikonnikov, F. Teppe, M. Orlita, K. V. Maremyanin, K. E. Spirin, V. I. Gavrilenko, W. Knap, S. A. Dvoretskiy, and N. N. Mihailov, Nanoscale Res. Lett. 7, 534 (2012).ADSCrossRefGoogle Scholar
  9. 9.
    A. Rogalski, Rep. Prog. Phys. 68, 2267 (2005).ADSCrossRefGoogle Scholar
  10. 10.
    I. Vurgaftman and J. R. Meyer, Opt. Express 2, 137 (1998).ADSCrossRefGoogle Scholar
  11. 11.
    M. A. Fadeev, V. V. Rumyantsev, A. M. Kadykov, A. A. Dubinov, A. V. Antonov, K. E. Kudryavtsev, S. A. Dvoretskii, N. N. Mikhailov, V. I. Gavrilenko, and S. V. Morozov, Opt. Express 26, 12755 (2018).ADSCrossRefGoogle Scholar
  12. 12.
    V. Ya. Aleshkin, A. A. Dubinov, V. V. Rumyantsev, M. A. Fadeev, O. L. Domnina, N. N. Mikhailov, S. A. Dvoretsky, F. Teppe, V. I. Gavrilenko, and S. V. Morozov, J. Phys.: Condens. Matter 30, 495301 (2018).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • V. V. Utochkin
    • 1
    Email author
  • V. Ya. Aleshkin
    • 1
  • A. A. Dubinov
    • 1
  • V. I. Gavrilenko
    • 1
  • N. S. Kulikov
    • 1
  • M. A. Fadeev
    • 1
  • V. V. Rumyantsev
    • 1
  • N. N. Mikhailov
    • 2
  • S. A. Dvoretskii
    • 2
  • S. V. Morozov
    • 1
  1. 1.Institute for Physics of Microstructures, Russian Academy of SciencesNizhny NovgorodRussia
  2. 2.Institute of Semiconductor Physics, Siberian Branch, Russian Academy of SciencesNovosibirskRussia

Personalised recommendations