Advertisement

Semiconductors

, Volume 53, Issue 9, pp 1242–1245 | Cite as

Studies of the Cross Section and Photoluminescence of a GaAs Layer Grown on a Si/Al2O3 Substrate

  • A. A. SushkovEmail author
  • D. A. Pavlov
  • V. G. Shengurov
  • S. A. Denisov
  • V. Yu. Chalkov
  • N. V. Baidus
  • A. V. Rykov
  • R. N. Kryukov
XXIII INTERNATIONAL SYMPOSIUM “NANOPHYSICS AND NANOELECTRONICS”, NIZHNY NOVGOROD, MARCH 11–14, 2019

Abstract

A GaAs/AlAs/GaAs/AlAs/Ge heterostructure grown on a Si/Al2O3(1\(\bar {1}\)02) substrate is formed and studied. The Ge buffer layer is produced by the “hot wire” technique, whereas the III–V layers are grown by metal–organic vapor-phase epitaxy. The optical quality of the III–V layers is determined by photoluminescence spectroscopy. Structural studies are performed by high-resolution transmission electron microscopy. The elemental composition is determined by energy-dispersive X-ray spectroscopy. In the study, the possibility of growing a single-crystal GaAs layer on a Si/Al2O3 substrate through AlAs/GaAs/AlAs/Ge buffer layers is shown.

Keywords:

heteroepitaxy transmission electron microscopy sapphire substrate GaAs layer photoluminescence spectra 

Notes

FUNDING

The study was supported by the Russian Foundation for Basic Research, project no. 18-32-00636 (MOVPE and PL measurements) and the Ministry of Education and Science of the Russian Federation, project no. 16.7443.2017/BCh.

CONFLICT OF INTEREST

The authors declare that they have no conflict of interest.

REFERENCES

  1. 1.
    T. Creazzo, E. Marchena, S. B. Krasulick, P. K. L. Yu, D. van Orden, J. Y. Spann, C. C. Blivin, L. He, H. Cai, J. M. Dallesasse, R. J. Stone, and A. Mizzahi, Opt. Express 21, 28048 (2013).ADSCrossRefGoogle Scholar
  2. 2.
    N. Baidus, V. Aleshkin, A. Dubinov, K. Kudryavtsev, S. Nekorkin, A. Novikov, D. Pavlov, A. Rykov, A. Sushkov, M. Shaleev, P. Yunin, D. Yurasov, and Z. Krasilnik, Crystals 8, 311 (2018).CrossRefGoogle Scholar
  3. 3.
    M. L. Seaford, D. H. Tomich, K. G. Eyink, L. Grazulis, K. Mahalingham, Z. Yang, and W. I. Wang, J. Electron. Mater. 29, 906 (2000).ADSCrossRefGoogle Scholar
  4. 4.
    N. H. Karam, V. Haven, S. M. Vernon, F. Namavar, N. El-Masry, N. Haegel, and M. M. Al-Jassim, Mater. Res. Soc. Symp. Proc. 198, 247 (1990).CrossRefGoogle Scholar
  5. 5.
    H. Lin, R. Lin, J. Chyi, and C. M. Lee, IEEE Photon. Technol. Lett. 20, 1621 (2008).ADSCrossRefGoogle Scholar
  6. 6.
    V. Ya. Aleshkin, N. V. Baidus, A. A. Dubinov, A. G. Fefelov, Z. F. Krasilnik, K. E. Kudryavtsev, S. M. Nekorkin, A. V. Novikov, D. A. Pavlov, I. V. Samartsev, E. V. Skorokhodov, M. V. Shaleev, A. A. Sushkov, A. N. Yablonskiy, P. A. Yunin, and D. V. Yurasov, Appl. Phys. Lett. 109, 061111 (2016).ADSCrossRefGoogle Scholar
  7. 7.
    V. G. Shengurov, S. A. Denisov, V. Yu. Chalkov, Yu. N. Buzynin, M. N. Drozdov, A. N. Buzynin, and P. A. Yunin, Tech. Phys. Lett. 41, 36 (2015).ADSCrossRefGoogle Scholar
  8. 8.
    A. V. Rykov, M. V. Dorokhin, P. S. Vergeles, N. V. Baidus, V. A. Kovalskiy, E. B. Yakimov, and O. A. Soltanovich, J. Phys.: Conf. Ser. 993, 012014 (2018).Google Scholar
  9. 9.
    C. K. Chia, J. R. Dong, D. Z. Chi, A. Sridhara, A. S. W. Wong, M. Suryana, G. K. Dalapati, S. J. Chua, and S. J. Lee, Appl. Phys. Lett. 92, 141905 (2008).ADSCrossRefGoogle Scholar
  10. 10.
    A. V. Rykov, M. V. Dorokhin, P. S. Vergeles, V. A. Kovalskiy, E. B. Yakimov, M. V. Ved, N. V. Baidus, A. V. Zdoroveyshchev, V. G. Shengurov, and S. A. Denisov, J. Phys.: Conf. Ser. 1124, 022037 (2018).Google Scholar
  11. 11.
    Yu. B. Bolkhovityanov and O. P. Pchelyakov, Phys. Usp. 51, 437 (2008).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • A. A. Sushkov
    • 1
    Email author
  • D. A. Pavlov
    • 1
  • V. G. Shengurov
    • 1
  • S. A. Denisov
    • 1
  • V. Yu. Chalkov
    • 1
  • N. V. Baidus
    • 1
  • A. V. Rykov
    • 1
  • R. N. Kryukov
    • 1
  1. 1.Lobachevsky State University of Nizhny NovgorodNizhny NovgorodRussia

Personalised recommendations