Skip to main content
Log in

Hyperfine Interaction and Shockley–Read–Hall Recombination in Semiconductors

  • Published:
Semiconductors Aims and scope Submit manuscript


Experimental and theoretical studies on optical orientation and spin-dependent recombination in a semiconductor in a magnetic field under the normal incidence of circularly polarized radiation onto the sample surface are reviewed. The experiments were carried out on GaAs1 –xNx solid solutions, in which Ga2+ interstitial displacement defects play the role of deep paramagnetic centers responsible for spin-dependent recombination. It is established that, in the investigated materials, the hyperfine interaction of a localized electron with one nucleus of the paramagnetic center remains strong even at room temperature. The theory is compared with an experiment conducted in the steady-state excitation mode and under two-pulse pump-probe conditions. An analytical formula for spin beats in a magnetic field is derived.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others


  1. C. Weisbuch and G. Lampel, Solid State Commun. 14, 141 (1974).

    Article  ADS  Google Scholar 

  2. R. C. Miller, W. T. Tsang, and W. A. Nordland, Jr., Phys. Rev. B 21, 1569 (1980).

    Article  ADS  Google Scholar 

  3. D. Paget, Phys. Rev. B 30, 931 (1984).

    Article  ADS  Google Scholar 

  4. V. K. Kalevich, E. L. Ivchenko, M. M. Afanasiev, A. Yu. Shiryaev, A. Yu. Egorov, V. M. Ustinov, B. Pal, and Ya. Masumoto, JETP Lett. 82, 455 (2005).

    Article  ADS  Google Scholar 

  5. L. Lombez, P.-F. Braun, H. Carrère, B. Urbaszek, P. Renucci, T. Amand, X. Marie, J. C. Harmand, and V. K. Kalevich, Appl. Phys. Lett. 87, 252115 (2005).

    Article  ADS  Google Scholar 

  6. V. K. Kalevich, A. Yu. Shiryaev, E. L. Ivchenko, A. Yu. Egorov, L. Lombez, D. Lagarde, X. Marie, and T. Amand, JETP Lett. 85, 174 (2007).

    Article  ADS  Google Scholar 

  7. E. L. Ivchenko, V. K. Kalevich, A. Yu. Shiryaev, M. M. Afanasiev, and Y. Masumoto, J. Phys.: Condens. Matter. 22, 465804 (2010).

    ADS  Google Scholar 

  8. X. J. Wang, I. A. Buyanova, F. Zhao, D. Lagarde, A. Balocchi, X. Marie, C. W. Tu, J. C. Harmand, and W. M. Chen, Nat. Mater. 8, 198 (2009).

    Article  ADS  Google Scholar 

  9. X. J. Wang, Y. Puttisong, C. W. Tu, Aaron J. Ptak, V. K. Kalevich, A. Yu. Egorov, L. Geelhaar, H. Riechert, W. M. Chen, and I. A. Buyanova, Appl. Phys. Lett. 95, 241904 (2009).

    Article  ADS  Google Scholar 

  10. V. K. Kalevich, M. M. Afanasiev, A. Yu. Shiryaev, and A. Yu. Egorov, Phys. Rev. B 85, 035205 (2012).

    Article  ADS  Google Scholar 

  11. V. K. Kalevich, M. M. Afanasiev, A. Yu. Shiryaev, and A. Yu. Egorov, JETP Lett. 96, 567 (2012).

    Article  ADS  Google Scholar 

  12. Y. Puttisong, X. J. Wang, I. A. Buyanova, L. Geelhaar, H. Riechert, A. J. Ptak, C. W. Tu, and W. M. Chen, Nat. Commun. 4, 1751 (2013).

    Article  ADS  Google Scholar 

  13. V. G. Ibarra-Sierra, J. C. Sandoval-Santana, S. Azaizia, H. Carrère, L. A. Bakaleinikov, V. K. Kalevich, E. L. Ivchenko, X. Marie, T. Amand, A. Balocchi, and A. Kunold, Phys. Rev. B 95, 195204 (2017).

    Article  ADS  Google Scholar 

  14. C. Sandoval-Santana, A. Balocchi, T. Amand, J. C. Harmand, A. Kunold, and X. Marie, Phys. Rev. B 90, 115205 (2014).

    Article  ADS  Google Scholar 

  15. E. L. Ivchenko, L. A. Bakaleinikov, and V. K. Kalevich, Phys. Rev. B 91, 205202 (2015).

    Article  ADS  Google Scholar 

  16. E. L. Ivchenko, L. A. Bakaleinikov, M. M. Afanasiev, and V. K. Kalevich, Phys. Solid State 58, 1539 (2016).

    Article  ADS  Google Scholar 

  17. M. I. D’yakonov and V. I. Perel’, Sov. Phys. JETP 36, 995 (1972).

    Google Scholar 

  18. J. C. Sandoval-Santana, V. G. Ibarra-Sierra, S. Azaizia, H. Carre[grave]re, L. A. Bakaleinikov, V. K. Kalevich, E. L. Ivchenko, X. Marie, T. Amand, A. Balocchi, and A. Kunold, J. Mater. Sci. Mater. Electron. 29, 15307 (2018).

    Article  Google Scholar 

  19. W. J. H. Leyland, G. H. John, R. T. Harley, M. M. Glazov, E. L. Ivchenko, D. A. Ritchie, I. Farrer, A. J. Shields, and M. Henini, Phys. Rev. B 75, 165309 (2007).

    Article  ADS  Google Scholar 

  20. S. Azaizia, H. Carrère, J. C. Sandoval-Santana, V. G. Ibarra-Sierra, V. K. Kalevich, E. L. Ivchenko, L. A. Bakaleinikov, X. Marie, T. Amand, A. Kunold, and A. Balocchi, Phys. Rev. B 97, 155201 (2018).

    Article  ADS  Google Scholar 

  21. Shula Chen, Yuqing Huang, D. Visser, S. Anand, I. A. Buyanova, and W. M. Chen, Nat. Commun. 9, 3575 (2018).

    Article  ADS  Google Scholar 

Download references


We are grateful to L.A. Bakaleinikov for fruitful discussion of the manuscript.


This study was supported in part by the Russian Foundation for Basic Research, project no. 17-52-16020. The work of A.B., X.M. and T.A. was partially supported by Programme Investissements d’Avenir under the program ANR-11-IDEX-0002-02, reference ANR-10-LABX-0037-NEXT. A.K. gratefully appreciates the financial support of Departamento de Ciencias Básicas UAM-A Grants no. 2232214 and No. 2232215.

Author information

Authors and Affiliations


Corresponding author

Correspondence to E. L. Ivchenko.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by E. Bondareva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ivchenko, E.L., Kalevich, V.K., Kunold, A. et al. Hyperfine Interaction and Shockley–Read–Hall Recombination in Semiconductors. Semiconductors 53, 1175–1181 (2019).

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: