Skip to main content
Log in

Electronic Excitation Energy Transfer in an Array of CdS Quantum Dots on a Quasi-Two-Dimensional Surface

  • SEMICONDUCTOR STRUCTURES, LOW-DIMENSIONAL SYSTEMS, AND QUANTUM PHENOMENA
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

The optical spectra of films composed of spherical silicon-dioxide particles coated with small-radius CdS quantum dots are recorded and analyzed. Large shifts of the absorption and photoluminescence bands are detected and studied in relation to the concentration of quantum dots and to the pumping density and wavelength. Analysis of the experimental data shows that the effects are due to electronic excitation energy transfer by particles through the mechanism of tunneling induced by a strong interaction between quantum dots. The results obtained at low pumping densities and different excitation wavelengths make it possible to describe the size distribution of CdS quantum dots. This distribution can be adequately approximated with a Gaussian function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. F. Remacle and R. D. Levine, ChemPhysChem 2, 20 (2001).

    Article  Google Scholar 

  2. N. Kholmicheva, P. Moroz, H. Eckard, G. Jensen, and M. Zamkov, ACS Energy Lett. 2, 154 (2017).

    Article  Google Scholar 

  3. N. Hildebrandt, C. M. Spillmann, W. R. Algar, T. Pons, M. H. Stewart, E. Oh, K. Susumu, S. A. Díaz, J. B. Delehanty, and I. L. Medintz, Chem. Rev. 117, 536 (2016).

    Article  Google Scholar 

  4. A. P. Litvin, E. V. Ushakova, P. S. Parfenov, A. V. Fedorov, and A. V. Baranov, J. Phys. Chem. C 118, 6531 (2014).

    Article  Google Scholar 

  5. A. A. Zarubanov, K. S. Zhuravlev, T. A. Duda, and A. V. Okotrub, JETP Lett. 95, 362 (2012).

    Article  ADS  Google Scholar 

  6. Dae Gwi Kim, S. Tomita, K. Ohshiro, T. Watanabe, T. Sakai, I-Ya. Chang, and K. Hyeon-Deuk, Nano Lett. 15, 4343 (2015).

    Article  ADS  Google Scholar 

  7. T. Hanrath, J. Vac. Sci. Technol. A 30, 030802 (2012).

    Article  Google Scholar 

  8. Fan Xu, L. F. Gerlein, Xin Ma, Ch. R. Haughn, M. F. Doty, and S. G. Cloutier, Materials 8, 1858 (2015).

    Article  ADS  Google Scholar 

  9. C. R. Kagan, C. B. Murray, and M. G. Bawendi, Phys. Rev. B 54, 8633 (1996).

    Article  ADS  Google Scholar 

  10. R. Koole, P. Liljeroth, C. de Mello Donega, D. Vanmaekelbergh, and A. Meijerink, J. Am. Chem. Soc. 128, 10436 (2006).

    Article  Google Scholar 

  11. H. Dollefeld, H. Weller, and A. Eychmuller, Nano Lett. 1, 267 (2001).

    Article  ADS  Google Scholar 

  12. K. N. Lawrence, M. A. Johnson, S. Dolai, A. Kumbhar, and R. Sardar, Nanoscale 7, 11667 (2015).

    Article  ADS  Google Scholar 

  13. N. V. Bondar’, M. S. Brodin, A. M. Brodin, and N. A. Matveevskaya, Semiconductors 50, 364 (2016).

    Article  ADS  Google Scholar 

  14. M. Alonso, M. Satoh, and K. Miyanami, Powder Technol. 62, 35 (1990).

    Article  Google Scholar 

  15. Z. Adamzhyk, Particles at Interfaces: Interactions, Deposition, Structure (Academic, Amsterdam, Boston, Heidelberg, 2006).

    Google Scholar 

  16. J. L. Marïn, R. Riera, and S. A. Cruz, J. Phys.: Condens. Matter 10, 1349 (1998).

    ADS  Google Scholar 

  17. W. W. Yu, L. Qu, W. Guo, and X. Peng, Chem. Mater. 15, 2854 (2003).

    Article  Google Scholar 

  18. V. A. Belyakov, K. V. Sydorenko, A. A. Konakov, N. V. Kurova, and V. A. Burdov, Semiconductors 47, 178 (2013).

    Article  ADS  Google Scholar 

  19. A. A. Zarubanov, V. F. Plyusnin, and K. S. Zhuravlev, Semiconductors 51, 576 (2017).

    Article  ADS  Google Scholar 

  20. J. Wang, S. J. Xiong, X. L. Wu, T. H. Li, and P. K. Chu, Nano Lett. 10, 1466 (2010).

    Article  ADS  Google Scholar 

  21. J. Zhu, Z. Liu, X. L. Wu, L. L. Xu, W. C. Zhang, and P. K. Chu, Nano Technol. 18, 365603 (2007).

    Google Scholar 

  22. M. V. Wolkin, J. Jorne, and P. M. Fauchet, Phys. Rev. Lett. 82, 197 (1999).

    Article  ADS  Google Scholar 

  23. U. Resch, A. Eychmiiller, M. Haase, and H. Weller, Langmuir 8, 2215 (1992).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The study was supported by the National Academy of Sciences of Ukraine, Program “Fundamental Problems of the Creation of New Nanomaterials and Nanotechnologies”, project NANO no. 2-16-N.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. V. Bondar.

Additional information

Translated by E. Smorgonskaya

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bondar, N.V., Brodyn, M.S., Matveevskaya, N.A. et al. Electronic Excitation Energy Transfer in an Array of CdS Quantum Dots on a Quasi-Two-Dimensional Surface. Semiconductors 53, 188–194 (2019). https://doi.org/10.1134/S1063782619020040

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063782619020040

Navigation