Advertisement

Semiconductors

, Volume 52, Issue 16, pp 2088–2091 | Cite as

Microlens-Enhanced Substrate Patterning and MBE Growth of GaP Nanowires

  • A. D. BolshakovEmail author
  • L. N. Dvoretckaia
  • V. V. Fedorov
  • G. A. Sapunov
  • A. M. Mozharov
  • K. Yu. Shugurov
  • V. A. Shkoldin
  • M. S. Mukhin
  • G. E. Cirlin
  • I. S. Mukhin
26th INTERNATIONAL SYMPOSIUM “NANOSTRUCTURES: PHYSICS AND TECHNOLOGY”. NANOSTRUCTURE TECHNOLOGY
  • 61 Downloads

Abstract

In this paper we demonstrate the results on selective area growth of GaP nanowires via self-catalyzed growth method using molecular beam epitaxy (MBE) technique on patterned Si(111) substrates. The pattern fabrication method on a base of the photolithography process over an array of microspherical lenses has been studied theoretically and then optimized in order to obtain the nanostructures with controlled morphology. It was found that the positive resist thickness corresponding to the best achievable resolution in the subwavelength region is 250 nm in case of 1.5 μm silica spheres and excitation with 365 nm LED. The silica growth mask for selective epitaxy was fabricated. The ordered array of GaP nanowires was synthesized with MBE. Large scale ordering and selectivity of the growth technique is demonstrated.

Notes

ACKNOWLEDGMENTS

A.M.M. and I.S.M. thanks for support of the MBE growth processess the government of the Russian Federation (grants 3.9796.2017/8.9 and 16.2593.2017/4.6). L.N.D. thanks for support of the numerical modeling the Russian Foundation for Basic Research (grant no. 18-32-00899). V.V.F. thanks for support of the AFM and SEM studies on nanostructure morphology and growth mask topography the Russian Science Foundation (grant no. 18-72-00219).

REFERENCES

  1. 1.
    J. M. Olson et al., J. Cryst. Growth 77, 515 (1986).ADSCrossRefGoogle Scholar
  2. 2.
    S. Assali et al., Nano Lett. 13, 1559 (2013).ADSCrossRefGoogle Scholar
  3. 3.
    A. I. Baranov, A. S. Gudovskikh, E. V. Nikitina, and A. Yu. Egorov, Tech. Phys. Lett. 39, 1117 (2013).ADSCrossRefGoogle Scholar
  4. 4.
    J. Xiang et al., Nature (London, U.K.) 441, 489 (2006).ADSCrossRefGoogle Scholar
  5. 5.
    X. Duan et al., Nature (London, U.K.) 421, 241 (2003).ADSCrossRefGoogle Scholar
  6. 6.
    C. J. Barrelet et al., Nano Lett. 4, 1981 (2004).ADSCrossRefGoogle Scholar
  7. 7.
    L. J. Lauhon et al., Nature (London, U.K.) 420, 57 (2002).ADSCrossRefGoogle Scholar
  8. 8.
    N. Skold et al., Nano Lett. 5, 1943 (2005).ADSCrossRefGoogle Scholar
  9. 9.
    O. Hayden et al., Adv. Mater. 17, 701 (2005).CrossRefGoogle Scholar
  10. 10.
    M. Timofeeva et al., Ultramicroscopy 162, 42–51 (2016).Google Scholar
  11. 11.
    V. Fedorov et al., Cryst. Eng. Comm. 20, 3370–3380, (2018).Google Scholar
  12. 12.
    V. Dubrovskii et al., Technical Physics Letters 38(4), 311–315 (2012).Google Scholar
  13. 13.
    A. Bolshakov et al., Beilstein journal of nanotechnology 9, 146 (2018).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • A. D. Bolshakov
    • 1
    Email author
  • L. N. Dvoretckaia
    • 1
  • V. V. Fedorov
    • 1
  • G. A. Sapunov
    • 1
  • A. M. Mozharov
    • 1
  • K. Yu. Shugurov
    • 1
  • V. A. Shkoldin
    • 1
  • M. S. Mukhin
    • 2
  • G. E. Cirlin
    • 1
    • 2
    • 3
  • I. S. Mukhin
    • 1
    • 2
  1. 1.St. Petersburg Academic UniversitySt. PetersburgRussia
  2. 2.ITMO UniversitySt. PetersburgRussia
  3. 3.Ioffe InstituteSt. PetersburgRussia

Personalised recommendations