Advertisement

Semiconductors

, Volume 52, Issue 14, pp 1861–1864 | Cite as

Spontaneous Emission Amplification in Silver—Organic Periodic Structures and Tamm Plasmon Structures

  • K. M. Morozov
  • K. A. Ivanov
  • N. Selenin
  • S. Mikhrin
  • D. de Sa Pereira
  • C. Menelaou
  • A. P. Monkman
  • M. A. KaliteevskiEmail author
PLASMONICS
  • 38 Downloads

Abstract

We have investigated Tamm plasmon structure and periodic metal-dielectric structures with active organic CBP (N,N-dicarbazolyl-4,4-biphenyl) layer. Tamm structure is based on SiO2/TiO2 5 pairs DBR, with 26 nm CBP and 50 nm silver layer on the top of it. Two periodic silver-organic structures using thermal evaporation technique with different CBP layer thickness (15 and 30 nm) was fabricated. The rate of fluorescence intensity decay of Tamm plasmon and periodic structures was experimentally measured in near ultraviolet region. We demonstrate, that decay time of CBP fluorescence intensity in Tamm plasmon structure and periodic metal-organic structures decreases several times.

Notes

ACKNOWLEDGMENTS

This work has been supported by the Russian Science Foundation, project no. 16-12-10503.

REFERENCES

  1. 1.
    M. Kaliteevski, I. Iorsh, S. Brand, R. A. Abram, J. M. Chamberlain, A. V. Kavokin, and I. A. Shelykh, Phys. Rev. B 76, 165415 (2007).CrossRefADSGoogle Scholar
  2. 2.
    M. E. Sasin, R. P. Seisyan, M. A. Kalitteevski, S. Brand, R. A. Abram, M. Chamberlain, A. Y. Egorov, A. P. Vasil’ev, V. S. Mikhrin, and A. V. Kavokin, Appl. Phys. Lett. 92, 251112 (2008).CrossRefADSGoogle Scholar
  3. 3.
    O. Gazzano, S. Michaelis de Vasconcellos, et al., Appl. Phys. Lett. 100, 232111 (2012).CrossRefADSGoogle Scholar
  4. 4.
    R. Brückner, A. A. Zakhidov, R. Scholz, M. Sudzius, S. I. Hintschich, et al., Nat. Photon. 6, 322 (2012).CrossRefADSGoogle Scholar
  5. 5.
    C. H. Xue, H. T. Jiang, H. Lu, G. Q. Du, and H. Chen, Opt. Lett. 38, 959 (2013).CrossRefADSGoogle Scholar
  6. 6.
    A. R. Gubaydullin, C. Symonds, J. Bellessa, K. A. Ivanov, E. D. Kolykhalova, M. E. Sasin, A. Lemaitre, P. Senellart, G. Pozina, and M. A. Kaliteevski, Sci. Rep. 7, 9014 (2017).CrossRefADSGoogle Scholar
  7. 7.
    L. Ferrari, C. Wu, D. Lepage, X. Zhang, and Z. Liu, Prog. Quantum Electron. 40, 1 (2015).CrossRefGoogle Scholar
  8. 8.
    S. Kéna-Cohen and S. R. Forrest, Nat. Photon. 4, 371 (2010).CrossRefADSGoogle Scholar
  9. 9.
    M. A. Kaliteevski, V. A. Mazlin, K. A. Ivanov, and A. R. Gubaydullin, Opt. Spectrosc. 119, 832 (2015).CrossRefADSGoogle Scholar
  10. 10.
    M. A. Kaliteevski, A. R. Gubaidullin, K. A. Ivanov, and V. A. Mazlin, Opt. Spectrosc. 121, 71 (2016).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • K. M. Morozov
    • 1
    • 2
  • K. A. Ivanov
    • 2
  • N. Selenin
    • 3
  • S. Mikhrin
    • 3
  • D. de Sa Pereira
    • 4
  • C. Menelaou
    • 4
  • A. P. Monkman
    • 4
  • M. A. Kaliteevski
    • 1
    • 2
    • 5
    Email author
  1. 1.St. Petersburg Academic UniversitySt. PetersburgRussia
  2. 2.ITMO UniversitySt. PetersburgRussia
  3. 3.Innolume GmbHDortmundGermany
  4. 4.Physics Department, Durham UniversityDurhamUK
  5. 5.Ioffe InstituteSt. PetersburgRussia

Personalised recommendations