Skip to main content
Log in

Determination of the Region of Thermal Stability of the Size and Phase Composition of Silver-Sulfide Semiconductor Nanoparticles

  • FABRICATION, TREATMENT, AND TESTING OF MATERIALS AND STRUCTURES
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

The region of thermal stability of the size and phase composition of silver sulfide (Ag2S) nanoparticles is determined. Nanopowders consisting of Ag2S nanoparticles 475–50 nm in sizes are produced by chemical deposition from aqueous solutions. To analyze the thermal stability of Ag2S nanoparticles, nanocrystalline powders are annealed upon heating from room temperature to 453 K. Annealing at temperatures of up to 453 K does not induce the growth of nanoparticles, nor any change in their phase composition, which allows the conclusion that this temperature range is the range of thermal stability of the nanostate of silver sulfide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. W. Kahle and H. Berger, Phys. Status Solidi A 2, 717 (1970).

    Article  ADS  Google Scholar 

  2. S. I. Sadovnikov, N. S. Kozhevnikova, and A. A. Rempel’, Inorg. Mater. 47, 837 (2011).

    Article  Google Scholar 

  3. A. Tang, Yu. Wang, H. Ye, C. Zhou, C. Yang, X. Li, H. Peng, F. Zhang, Y. Hou, and F. Teng, Nanotechnology 24, 355602 (2013).

    Article  Google Scholar 

  4. S. I. Sadovnikov, A. A. Rempel, and A. I. Gusev, Nanostructured Lead, Cadmium and Silver Sulfides: Structure, Nonstoichiometry and Properties (Springer Int., Cham, Heidelberg, 2018).

    Book  Google Scholar 

  5. S. I. Sadovnikov, A. A. Rempel, and A. I. Gusev, Russ. Chem. Rev. 87, 303 (2018).

    Article  ADS  Google Scholar 

  6. K. Terabe, T. Hasegawa, T. Nakayama, and M. Aono, Nature (London, U.K.) 433, 47 (2005).

    Article  ADS  Google Scholar 

  7. C. H. Liang, K. Terabe, T. Hasegawa, and M. Aono, Nanotechnology 18, 485202 (2007).

    Article  Google Scholar 

  8. D. Wang, L. Liu, Y. Kim, X. Huang, D. Pantel, D. Hesse, and M. Alexe, Appl. Phys. Lett. 98, 243109 (2011).

    Article  ADS  Google Scholar 

  9. Y. Zhang, Y. Liu, C. Li, X. Chen, and Q. Wang, J. Phys. Chem. C 118, 4918 (2014).

    Article  Google Scholar 

  10. S. I. Sadovnikov and A. I. Gusev, J. Mater. Chem. A 5, 17676 (2017).

    Article  Google Scholar 

  11. S. I. Sadovnikov, Yu. V. Kuznetsova, and A.  A. Rempel, Nanostr. Nano-Object. 7, 81 (2016).

    Article  Google Scholar 

  12. T. Jawhari, Analysis 28, 15 (2000).

    Google Scholar 

  13. V. N. Strekalovskii, E. G. Vovkotrub, and A. B. Salyulev, Analit. Kontr. 4, 334 (2000).

    Google Scholar 

  14. X'Pert Plus, Version 1.0, Program for Crystallography and Rietveld Analysis Philips Analytical B.V. (Koninklijke Philips Electronics and N.V., 1999).

  15. A. I. Gusev and A. A. Rempel, Nanocrystalline Materials (Cambridge Int. Sci., Cambridge, 2004).

    Google Scholar 

  16. I. Martina, R. Wiesinger, D. Jembrih-Simbürger, and M. Schreiner, E-Preserv. Sci. (Morana RTD) 9, 1 (2012).

    Google Scholar 

  17. J. I. Lee, S. M. Howard, J. J. Kellar, K. N. Han, and W. Cross, Metall. Mater. Trans. B 32, 805 (2001).

    Article  Google Scholar 

  18. A. N. Belov, O. V. Pyatilova, and M. I. Vorobiev, Adv. Nanopart. 3, 1 (2014).

    Article  Google Scholar 

  19. M. Osada, K. Terabe, C. Liang, and T. Hasegawa, in Proceedings of the 214th ECS Meeting MA 2008-2, Honolulu, 2008, Abstract 1406.

  20. Y. Delgado-Beleño, M. Cortez-Valadez, C. E. Martinez-Nuñez, R. Britto Hurtado, A. B. Alvarez Ramón, O. Rocha-Rocha, H. Arizpe-Chávez, A. Perez-Rodríguez, and M. Flores-Acosta, Chem. Phys. 463, 106 (2015).

    Article  Google Scholar 

  21. L. Hashmi, P. Sana, M. M. Malik, A. H. Siddiqui, and M. S. Qureshi, Nano Hybrides 1, 23 (2012).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The study was supported by the Russian Science Foundation, project no. 14-23-00025, at the Institute of Solid-State Chemistry, Ural Branch, Russian Academy of Sciences. The study was carried out with the use of equipment of the Multiple-Access Center “Composition of Materials”, Institute of High-Temperature Electrochemistry, Ural Branch, Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. I. Sadovnikov.

Additional information

Translated by E. Smorgonskaya

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sadovnikov, S.I., Vovkotrub, E.G. Determination of the Region of Thermal Stability of the Size and Phase Composition of Silver-Sulfide Semiconductor Nanoparticles. Semiconductors 52, 1763–1769 (2018). https://doi.org/10.1134/S1063782618130146

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063782618130146

Navigation