Skip to main content
Log in

Redistribution of Erbium and Oxygen Recoil Atoms and the Structure of Silicon Thin Surface Layers Formed by High-Dose Argon Implantation through Er and SiO2 Surface Films

  • SURFACES, INTERFACES, AND THIN FILMS
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

Using analytical high-resolution electron microscopy, the Si structure and the redistribution of Er and O recoil atoms embedded in thin (~10 nm) surface layers by Ar+ implantation with an energy of 250–290 keV and a dose of 1 × 1016 cm–2 through Er and SiO2 films, respectively, and subsequent annealing are studied. It is established that Si recrystallization fails at a distance of ~20 nm from the surface, where the erbium concentration of 5 × 1019 cm–3 critical for failure is achieved at T = 950°C. It disproves the generally accepted model of Er-atom transfer by the recrystallization front into SiO2 on the surface. Instead, it is shown that the redistribution of O recoil atoms to the initial oxide during annealing for immobile Er atoms provides the formation of surface-inhomogeneous erbium phases in such a way that the oxygen-enriched Er–Si–O phase turns out to be concentrated in the oxide, while the depleted Er–Si phase remains in Si. It explains the partial loss of implanted Er after removal of the oxide together with the Er–Si–O phase. It was shown that the formation of a high density of microtwins (locally up to 1013 cm–2) is associated with the formation of Ar bubbles and clusters, which is atypical for (100)–Si recrystallization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. H. Park, A. W. Fang, S. Kodama, and J. E. Bowers, Opt. Express 13, 9460 (2005).

    Article  ADS  Google Scholar 

  2. A. W. Fang, H. Park, R. Jones, O. Cohen, M. J. Paniccia, and J. E. Bowers, IEEE Phot. Techn. Lett. 18, 1143 (2006).

    Article  ADS  Google Scholar 

  3. A. W. Fang, H. Park, O. Cohen, R. Jones, M. J. Paniccia, and J. E. Bowers, Opt. Express 14, 9203 (2006).

    Article  ADS  Google Scholar 

  4. N. A. Sobolev, Semiconductors 29, 595 (1995).

    ADS  Google Scholar 

  5. A. Polman, J. Appl. Phys. 82, 1 (1997).

    Article  ADS  Google Scholar 

  6. A. J. Kenyon, Semicond. Sci. Technol. 20, R65 (2005).

    Article  ADS  Google Scholar 

  7. H. Ennen, J. Schneider, G. Pomrenke, and A. Axmann, Appl. Phys. Lett. 43, 943 (1983).

    Article  ADS  Google Scholar 

  8. S. Coffa, G. Franzògo and F. Priolo, J. Appl. Phys. 81, 2784 (1997).

    Article  ADS  Google Scholar 

  9. M. A. Green, J. Zhao, A. Wang, P. J. Reece, and M. Gal, Nature (London, U.K.) 412, 805 (2001).

    Article  ADS  Google Scholar 

  10. A. M. Emel’yanov and N. A. Sobolev, Semiconductors 42, 329 (2008).

    Article  ADS  Google Scholar 

  11. N. A. Sobolev, Mater. Sci. Forum 590, 79 (2008).

    Article  Google Scholar 

  12. S. Coffa, F. Priolo, G. Franzo, V. Bellani, A. Carnera, and C. Spinella, Phys. Rev. B 48, 11782 (1993).

    Article  ADS  Google Scholar 

  13. O. V. Aleksandrov, A. O. Zakhar’in, N. A. Sobolev, and Yu. A. Nikolaev, Semiconductors 36, 358 (2002).

    Article  ADS  Google Scholar 

  14. A. Polman, G. N. van den Hoven, J. S. Custer, J. H. Shin, R. Serna, and P. F. A. Alkemade, J. Appl. Phys. 77, 1256 (1995).

    Article  ADS  Google Scholar 

  15. O. B. Gusev, M. S. Bresler, P. E. Pak, and I. N. Yassievich, Phys. Rev. B 64, 075302 (2001).

    Article  ADS  Google Scholar 

  16. K. E. Kudryavtsev, D. I. Kryzhkov, L. V. Krasil’nikova, D. V. Shengurov, V. B. Shmagin, B. A. Andreev, and Z. F. Krasil’nik, JETP Lett. 100, 807 (2014).

    Article  ADS  Google Scholar 

  17. J. D. B. Bradley, and M. Pollnau, Laser Photon. Rev. 5, 368 (2011).

    Article  ADS  Google Scholar 

  18. G. Mula, T. Printemps, C. Licitra, E. Sogne, F. D’Acapito, N. Gambacorti, N. Sestu, M. Saba, E. Pinna, D. Chiriu, P. C. Ricci, A. Casu, F. Quochi, A. Mura, G. Bongiovanni, and A. Falqui, Sci. Rep. 7, 5957 (2017).

    Article  ADS  Google Scholar 

  19. J. M. Ramirez, Y. Berencen, L. Lopez-Conesa, J. M. Rebled, F. Peiro, and B. Garrido, Appl. Phys. Lett. 103, 081102 (2013).

    Article  ADS  Google Scholar 

  20. S. Wang, A. Eckau, E. Neufeld, R. Carius, and Ch. Buchal, Appl. Phys. Lett. 71, 2824 (1997).

    Article  ADS  Google Scholar 

  21. H. Krzyzanowska, K. S. Ni, Y. Fu, and P. M. Fauchet, Mater. Sci. Eng. B 177, 1547 (2012).

    Article  Google Scholar 

  22. Y. Berencen, S. Illera, L. Rebohle, J. M. Ramirez, R. Wutzler, A. Cirera, D. Hiller, J. A. Rodríguez, W. Skorupa, and B. Garrido, J. Phys. D: Appl. Phys. 49, 085106 (2016).

    Article  ADS  Google Scholar 

  23. K. Dasari, J. Wu, H. Huhtinen, W. M. Jadwisienczak, and R. Palai, J. Phys. D: Appl. Phys. 50, 175104 (2017).

    Article  ADS  Google Scholar 

  24. V. X. Ho, T. V. Dao, H. X. Jiang, J. Y. Lin, J. M. Zavada, S. A. McGill, and N. Q. Vinh, Sci. Rep. 7, 39997 (2017).

    Article  ADS  Google Scholar 

  25. M. A. Lourenço, M. M. Milošević, A. Gorin, R. M. Gwilliam, and K. P. Homewood, Sci. Rep. 6, 37501 (2016).

    Article  Google Scholar 

  26. M. N. Drozdov, N. V. Latukhina, M. V. Stepikhova, V. A. Pokoeva, and M. A. Surin, Mod. Electron. Mater. 2, 7 (2016).

    Article  Google Scholar 

  27. S. Naczas, P. Akhter, and M. Huang, Appl. Phys. Lett. 98, 113101 (2011).

    Article  ADS  Google Scholar 

  28. M. Celebrano, L. Ghirardini, P. Biagioni, M. Finazzi, Y. Shimizu, Y. Tu, K. Inoue, Y. Nagai, T. Shinada, Y. Chiba, A. Abdelghafar, M. Yano, T. Tanii, and E. Prati, arXiv:1702.00331v1 (2017).

  29. K. V. Feklistov, D. S. Abramkin, V. I. Obodnikov, and V. P. Popov, Tech. Phys. Lett. 41, 788 (2015).

    Article  ADS  Google Scholar 

  30. K. V. Feklistov, A. G. Cherkov, and V. P. Popov, Solid State Commun. 242, 41 (2016).

    Article  ADS  Google Scholar 

  31. A. Polman, J. S. Custer, E. Snoeks, and G. N. van den Hoven, Appl. Phys. Lett. 62, 507 (1993).

    Article  ADS  Google Scholar 

  32. J. S. Custer, A. Polman, and H. M. van Pinxteren, J. Appl. Phys. 75, 2809 (1994).

    Article  ADS  Google Scholar 

  33. O. B. Aleksandrov, Yu. A. Nikolaev, and N. A. Sobolev, Semiconductors 32, 1266 (1998).

    Article  ADS  Google Scholar 

  34. J. F. Ziegler, J. P. Biersack, and M. D. Ziegler, www.srim.org.

  35. K. S. Jones, S. Prussin, and E. R. Weber, Appl. Phys. A 45, 1 (1988).

    Article  ADS  Google Scholar 

  36. B. de Mauduit, L. Lańab, C. Bergaud, M. M. Faye, A. Martinez, and A. Claverie, Nucl. Instrum. Methods Phys. Res. B 84, 190 (1994).

    Article  ADS  Google Scholar 

  37. F. Cristiano, J. Grisolia, B. Colombeau, M. Omri, B. de Mauduit, A. Claverie, L. F. Giles, and N. E. B. Co-wern, J. Appl. Phys. 87, 8420 (2000).

    Article  ADS  Google Scholar 

  38. M. D. Rechtin, P. P. Pronko, G. Foti, L. Csepregi, E. F. Kennedy, and J. W. Mayer, Philos. Mag., A 37, 605 (1978).

    Article  ADS  Google Scholar 

  39. A. L. Roitbijrd, Phys. Status Solidi A 37, 329 (1976).

    Article  ADS  Google Scholar 

  40. A. K. Gutakovskii, S. I. Stenin, and B. G. Zakharov, Phys. Status Solidi A 67, 299 (1981).

    Article  ADS  Google Scholar 

  41. A. R. Lahrood, T. de los Arcos, M. Prenzel, A. von Keu-dell, and J. Winter, Thin Solis Films 520, 1625 (2011).

    Article  ADS  Google Scholar 

  42. M. Prieto-Depedro, I. Romero, and I. Martin-Bragado, Acta Mater. 82, 115 (2015).

    Article  Google Scholar 

  43. M. K. Miller and R. G. Forbes, Atom-Probe Tomography: The Local Electrode Atom Probe (Springer, New York, 2014).

    Book  Google Scholar 

  44. R. C. Newman, J. Phys.: Condens. Matter 12, R335 (2000).

    ADS  Google Scholar 

  45. NBS Selected Values of Chemical Thermodynamic Properties, Tech. Notes 270-7 (National Bureau of Standards, 1973), p. 65; Tech. Notes 270-2 (National Bureau of Standards, 1966), p. 24.

  46. C. Choi, M. Jang, Y. Kim, M. Jun, T. Kim, and M. Song, Appl. Phys. Lett. 91, 012903-1 (2007).

    Article  ADS  Google Scholar 

  47. C. Choi, M. Jang, Y. Kim, M. Jun, T. Kim, and M. Song, Mater. Trans. 51, 793 (2010).

    Article  Google Scholar 

  48. C. S. Wu, D. M. Scott, and S. S. Lau, J. Appl. Phys. 58, 1330 (1985).

    Article  ADS  Google Scholar 

  49. Physical Values, the Handbook, Ed. by I. S. Grigor’ev and E. Z. Meilikhov (Energoatomizdat, Moscow, 1991) [in Russian].

    Google Scholar 

Download references

ACKNOWLEDGMENTS

We thank the Novosibirsk State University for TEM measurements in the framework of the state program “Provision of Scientific Research”.

The work was supported by the Program of Basic Research, Russian Academy of Sciences, no. 8.1.5. The defects in the structure were analyzed with the support of the Russian Science Foundation, project no. 14-22-00143.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. V. Feklistov.

Additional information

Translated by V. Bukhanov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feklistov, K.V., Cherkov, A.G., Popov, V.P. et al. Redistribution of Erbium and Oxygen Recoil Atoms and the Structure of Silicon Thin Surface Layers Formed by High-Dose Argon Implantation through Er and SiO2 Surface Films. Semiconductors 52, 1696–1703 (2018). https://doi.org/10.1134/S1063782618130055

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063782618130055

Navigation