Skip to main content
Log in

Electrical Properties of Indium-Oxide Thin Films Produced by Plasma-Enhanced Reactive Thermal Evaporation

  • FABRICATION, TREATMENT, AND TESTING OF MATERIALS AND STRUCTURES
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

The structure and electrical properties of transparent indium-oxide thin films produced by plasma-enhanced reactive thermal evaporation at different substrate temperatures are studied. It is found that the films have a grained structure. An increase in the substrate temperature yields a considerable increase in the conductivity of the films and a decrease in the photoconductivity-relaxation time. An interpretation of the effect of the substrate temperature on the observed changes in the electrical and photoelectric properties of the indium-oxide films under study is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. S. Lee, Y. Song, H. Park, A. Zaslavsky, and D. Paine, Solid-State Electron. 135, 94 (2017).

    Article  ADS  Google Scholar 

  2. G. G. Untila, T. N. Kost, and A. B. Chebotareva, Sol. Energy 159, 173 (2018).

    Article  ADS  Google Scholar 

  3. S. Dellis, I. Isakov, N. Kalfagiannis, K. Tetzner, T. Anthopoulos, and D. Koutsogeorgis, J. Mater. Chem. C 5, 3673 (2017).

    Article  Google Scholar 

  4. Dhananjay, Shiau-Shin Cheng, Chuan-Yi Yang, Chun-Wei Ou, You-Che Chuang, M Chyi Wu, and Chih-Wei Chu, J. Phys. D: Appl. Phys. 41, 92006 (2008).

    Article  Google Scholar 

  5. G. Korotcenkov, V. Brinzari, S. H. Han, and B. K. Cho, Mater. Chem. Phys. 175, 188 (2016).

    Article  Google Scholar 

  6. A. S. Ilin, M. I. Ikim, P. A. Forsh, T. V. Belysheva, M. N. Martyshov, P. K. Kashkarov, and L. I. Trakhtenberg, Sci. Rep. 7, 12204 (2017).

    Article  ADS  Google Scholar 

  7. M. N. Martyshov, E. A. Forsh, A. V. Marikutsa, P. A. Forsh, M. N. Rumyantseva, A. M. Gaskov, and P. K. Kashkarov, J. Nanoelectron. Optoelectron. 6, 452 (2011).

    Google Scholar 

  8. E. A. Forsh, A. V. Marikutsa, M. N. Martyshov, P. A. Forsh, M. N. Rumyantseva, A. M. Gaskov, and P. K. Kashkarov, Nanotechnol. Russ. 7, 164 (2012).

    Article  Google Scholar 

  9. A. Gurlo, M. Ivanovskaya, A. Pfau, U. Weimar, and W. G. Spel, Thin Solid Films 307, 288 (1997).

    Article  ADS  Google Scholar 

  10. A. Ilin, M. Martyshov, E. Forsh, P. Forsh, M. Rumyantseva, A. Abakumov, A. Gaskov, and P. Kashkarov, Sens. Actuators, B 231, 491 (2016).

    Article  Google Scholar 

  11. J. K. Sheu, Y. K. Su, G. C. Chi, M. J. Jou, and C. M. Chang, Appl. Phys. Lett. 72, 3317 (1998).

    Article  ADS  Google Scholar 

  12. I. N. Reddy, Ch. V. Reddy, M. Cho, J. Shim, and D. Kim, Mater. Res. Express 4, 86406 (2017).

    Article  Google Scholar 

  13. M. Suchea, N. Katsarakis, S. Christoulakis, S. Nikolopoulou, and G. Kiriakidis, Sens. Actuators, B 118, 135 (2006).

    Article  Google Scholar 

  14. S. K. Chong, S. N. A. Azizan, K. W. Chan, H. Nguyen, W. S. Chiu, Z. Aspanut, Ch. F. Dee, and S. A. Rahman, Nanoscale Res. Lett. 8, 428 (2013).

    Article  ADS  Google Scholar 

  15. C. Li, D. Zhang, S. Han, X. Liu, T. Tang, and C. Zhou, Adv. Mater. 15, 143 (2003).

    Article  Google Scholar 

  16. E. A. Forsh, A. V. Marikutsa, M. N. Martyshov, P. A. Forsh, M. N. Rumyantseva, A. M. Gaskov, and P. K. Kashkarov, Thin Solid Films 558, 320 (2014).

    Article  ADS  Google Scholar 

  17. M. Fernandes, Y. Vygranenko, M. Vieira, G. Lavareda, C. Nunes de Carvalho, and A. Amaral, Energy Proc. 102, 96 (2016).

    Article  Google Scholar 

  18. J. Ni, L. Wang, Y. Yang, H. Yan, S. Jin, T. J. Marks, J. R. Ireland, and C. R. Kannewurf, Inorg. Chem. 44, 6071 (2005).

    Article  Google Scholar 

  19. J. H. W. de Wit, J. Solid State Chem. 149, 142 (1973).

  20. E. Barsoukov and J. R. Macdonald, Impedance Spectroscopy: Theory, Experiment, and Applications (Wiley, Hoboken, USA, 2005).

    Book  Google Scholar 

  21. E. A. Forsh, A. S. Ilyin, M. N. Martyshov, P. A. Forsh, and P. K. Kashkarov, Nanotechnol. Russ. 9, 618 (2014).

    Article  Google Scholar 

  22. A. T. Vai, N. Rashidi, Y. Fang, V. L. Kuznetsov, and P. P. Edwards, J. Phys.: Condens. Matter 28, 224003 (2016).

    ADS  Google Scholar 

  23. A. Dixit, Raghava P. Panguluri, C. Sudakar, P. Kharel, P. Thapa, I. Avrutsky, R. Naik, G. Lawes, and B. Nadgorny, Appl. Phys. Lett. 94, 252105 (2009).

    Article  ADS  Google Scholar 

  24. E. A. Forsh, A. M. Abakumov, V. B. Zaytsev, E. A. Konstantinova, P. A. Forsh, M. N. Rumyantseva, A. M. Gaskov, and P. K. Kashkarov, Thin Solid Films 595, 25 (2015).

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The study was supported by the Russian Foundation for Basic Research, project no. 16-32-60060mol_a_dk.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Ilin.

Additional information

Translated by E. Smorgonskaya

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ilin, A.S., Matsukatova, A.N., Forsh, P.A. et al. Electrical Properties of Indium-Oxide Thin Films Produced by Plasma-Enhanced Reactive Thermal Evaporation. Semiconductors 52, 1638–1641 (2018). https://doi.org/10.1134/S1063782618120114

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063782618120114

Keywords

Navigation