, Volume 52, Issue 11, pp 1407–1411 | Cite as

Application of the Locally Nonequilibrium Diffusion-Drift Cattaneo–Vernotte Model to the Calculation of Photocurrent Relaxation in Diode Structures under Subpicosecond Pulses of Ionizing Radiation

  • A. S. PuzanovEmail author
  • S. V. Obolenskiy
  • V. A. Kozlov


The excitation-relaxation process in electron–hole plasma upon exposure to ionizing radiation for a time shorter than the relaxation time of the mobile carrier energy and momentum is considered. By the example of the calculation of transient ionization processes in a silicon hyperhigh-frequency Schottky diode, local-equilibrium and local-nonequilibrium carrier transport models are compared. It is shown that the local-nonequilibrium model features a wider field of application for describing fast relaxation processes.



This study was supported by the Russian Foundation for Basic Research, project no. 15-02-07935 and programs of the Russian Academy of Sciences.


  1. 1.
    R. Jones, A. M. Chugg, C. M. S. Jones, P. H. Duncan, C. S. Dyer, and C. Sanderson, IEEE Trans. Nucl. Sci. 47, 539 (2000).ADSCrossRefGoogle Scholar
  2. 2.
    A. I. Chumakov, A. N. Egorov, O. B. Mavritskii, and A. V. Yanenko, Russ. Microelectron. 33, 106 (2004).CrossRefGoogle Scholar
  3. 3.
    M. Sakhno, A. Golenkov, and F. Sizov, J. Appl. Phys. 114, 164503 (2013).ADSCrossRefGoogle Scholar
  4. 4.
    P. Vernotte, C.R. Acad. Sci. Paris 246, 3154 (1958).Google Scholar
  5. 5.
    C. Cattaneo, C.R. Acad. Sci. Paris 247, 431 (1958).Google Scholar
  6. 6.
    D. Jou, J. Casas-Vazquez, and G. Lebon, Extended Irreversible Thermodynamics (Spinger, Berlin, Heidelberg, 2010).Google Scholar
  7. 7.
    W. Shockley, Bell Syst. Technol. J. 28, 435 (1949).CrossRefGoogle Scholar
  8. 8.
    L. Onsager, Phys. Rev. 37, 405 (1931).ADSCrossRefGoogle Scholar
  9. 9.
    L. Onsager, Phys. Rev. 38, 2265 (1931).ADSCrossRefGoogle Scholar
  10. 10.
    K. V. Zhukovskii, Uch. Zap. Fiz. Fak. MGU, No. 6, 1740301 (2017).Google Scholar
  11. 11.
    M. Yu. Belevich, Uch. Zap. Ross. Gos. Gidrometeorol. Univ. 10, 101 (2009).Google Scholar
  12. 12.
    S. L. Sobolev, Sov. Phys. Usp. 34, 218 (1991).ADSCrossRefGoogle Scholar
  13. 13.
    S. M. Sze, Physics of Semiconductor Devices (Wiley, New York, 1981).Google Scholar
  14. 14.
    R. Stratton, Phys. Rev. 126, 2002 (1962).ADSCrossRefGoogle Scholar
  15. 15.
    K. Blotekjaer, IEEE Trans. Electron Dev. 17, 38 (1970).ADSCrossRefGoogle Scholar
  16. 16.
    A. V. Lykov, Theory of Heat Conductivity (Vyssh. Shkola, Moscow, 1967) [in Russian].Google Scholar
  17. 17.
    M. Lundstrom, Fundamentals of Carrier Transport (Cambridge Univ. Press, Cambridge, 2000).CrossRefGoogle Scholar
  18. 18.
    F. Ekoue, A. Fouache d’Halloy, D. Gigon, G. Plantamp, and E. Zajdman, Int. J. Phys. Math. Sci. 7, 772 (2013).Google Scholar
  19. 19.
    V. K. Kiselev, S. V. Obolenskii, A. S. Puzanov, and A. V. Skupov, Zh. Radiotekh. 17 (2), 10 (2014).Google Scholar
  20. 20.
    R. A. Guyer and J. A. Krumhansl, Phys. Rev. 148, 766 (1966).ADSCrossRefGoogle Scholar
  21. 21.
    R. A. Guyer and J. A. Krumhansl, Phys. Rev. 148, 778 (1966).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • A. S. Puzanov
    • 1
    Email author
  • S. V. Obolenskiy
    • 1
  • V. A. Kozlov
    • 1
    • 2
  1. 1.Lobachevsky State University of Nizhny NovgorodNizhny NovgorodRussia
  2. 2.Institute for Physics of Microstructures, Russian Academy of SciencesNizhny NovgorodRussia

Personalised recommendations