Skip to main content

Copper(I) Selenide Thin Films: Composition, Morphology, Structure, and Optical Properties

Abstract

The systematized results of studies of the composition, morphology, structure, optical properties, and conductivity of hydrochemically deposited copper(I) selenide thin films (Cu1.8Se) with the thickness of 390–400 nm are reported. The studies are carried out using scanning electron microscopy, energy-dispersive analysis, X-ray diffraction analysis, and X-ray photoelectron spectroscopy. The hole conductivity of the layers is established by the thermopower technique. The optical band gap determined from the results of studies of optical absorbance and diffuse reflection spectra of the films at 298 K is 2.5 and 1.84 eV for direct and indirect optical transitions, respectively.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

REFERENCES

  1. M. Doriani, H. J. Dehdashti, and M. H. Sheikhi, J. Sol. Energy Eng. 137, 178 (2016).

    Google Scholar 

  2. M. Mazzer, S. Rampino, E. Gombia, M. Bronzoni, F. Bissoli, and F. Pattini, Energies 9, 207 (2016).

    Article  Google Scholar 

  3. S. Oueslati, G. Brammertz, M. Buffière, H. ElAnzeery, O. Touayar, C. Köble, J. Bekaert, M. Meuris, and J. Poortmans, Thin Solid Films 582, 224 (2015).

    ADS  Article  Google Scholar 

  4. R. Kondrotas, R. Juškėnas, R. Kondrotas, Sol. Energy Mater. Sol. Cells 132, 21 (2015).

    Article  Google Scholar 

  5. S. Lei, A. Sobhani, F. Wen, A. George, Q. Wang, Y. Huang, P. Dong, B. Li, S. Najmaei, J. Bellah, G. Gupta, A. D. Mohite, L. Ge, J. Lou, N. J. Halas, R. Vajtai, and P. Ajayan, Adv. Mater. 26, 7666 (2014).

    Article  Google Scholar 

  6. G. Juska, V. Gulbinas, and A. Jagminas, Lithuan. J. Phys. 50, 233 (2010).

    Article  Google Scholar 

  7. V. S. Gurin, A. A. Alexeenko, S. A. Zolotovskaya, and K. V. Yumashev, Mater. Sci. Eng. C 26, 952 (2006).

    Article  Google Scholar 

  8. C. Levy-Clement, M. Neumann-Spallart, S. K. Haram, and K. S. V. Santhanam, Thin Solid Films 302, 12 (1997).

    ADS  Article  Google Scholar 

  9. V. M. Bhuse, P. P. Hankare, K. M. Garadkar, and A. S. Khomane, Mater. Chem. Phys. 80, 82 (2003).

    Article  Google Scholar 

  10. L. V. Yan-Hong, Chen Ji-Kun, Döbelli Max, Li Yu-Long, Shi Xun, and Chen Li-Dong, J. Inorg. Mater. 30, 1115 (2015).

    Article  Google Scholar 

  11. S. Y. Zhang, C. Fang, Y. Tian, K. Zhu, B. Jin, Y. Shen, and J. Yang, Cryst. Growth Des. 6, 2809 (2006).

    Article  Google Scholar 

  12. H. M. Pathan, C. D. Lokhande, D. P. Amalnerkar, and T. Seth, Appl. Surf. Sci. 211, 48 (2003).

    ADS  Article  Google Scholar 

  13. H. Liu, X. Shi, F. Xu, L. Zhang, W. Zhang, L. Chen, Q. Li, C. Uher, T. Day, and G. J. Snyder, Nat. Mater. 11, 422 (2012).

    ADS  Article  Google Scholar 

  14. A. A. Ivanov, A. I. Sorokin, V. P. Panchenko, I. V. Tarasova, N. Yu. Tabachkova, V. T. Bublik, and R. Kh. Akchurin, Semiconductors 51, 866 (2017).

    ADS  Article  Google Scholar 

  15. Z. Zainal, S. Nagalingam, and T. C. Loo, Mater. Lett. 59, 1391 (2005).

    Article  Google Scholar 

  16. M. Dhanam, P. K. Manoj, and R. R. Prabhu, J. Cryst. Growth 280, 425 (2005).

    ADS  Article  Google Scholar 

  17. M. Gili, M. Petrovi, J. Církovi, N. Paunovi, S. Savi-Sevi, Ž. Nikitovi, M. Romčević, I. Yahia, and N. Romčević, Process. Appl. Ceram. 2, 127 (2017).

    Article  Google Scholar 

  18. S. K. Haram and K. S. V. Santhanam, Thin Solid Films 238, 21 (1994).

    ADS  Article  Google Scholar 

  19. T. C. Liu, Y. Hu, and W. B. Chang, Mater. Sci. Eng. B 180, 33 (2014).

    Article  Google Scholar 

  20. F. Lin, G. Q. Bian, and Z. X. Lei, Solid State Sci. 11, 972 (2009).

    ADS  Article  Google Scholar 

  21. V. M. García, Superficies Vaccio 9, 213 (1999).

    Google Scholar 

  22. I. A. Ezenwa, N. A. Okereke, and L. N. Okoli, Int. Res. J. Eng. Sci. 2, 82 (2013).

    Google Scholar 

  23. C. E. Hamilton, D. J. Flood, and A. R. Barron, Phys. Chem. Chem. Phys. 15, 3930 (2013).

    Article  Google Scholar 

  24. S. Thirumavalavan, K. Mani, and S. Sagadevan, Mater Res. 18, 1000 (2015).

    Article  Google Scholar 

  25. A. S. Katysheva, V. F. Markov, and L. N. Maskaeva, Russ. J. Inorg. Chem. 58, 833 (2013).

    Article  Google Scholar 

  26. N. A. Tret’yakova, V. F. Markov, L. N. Maskaeva, M. P. Mironov, and V. F. D’yakov, Izv. Vyssh. Uchebn. Zaved., Khim. Khim. Tekhnol. 51, 37 (2008).

    Google Scholar 

  27. V. F. Markov and L. N. Maskaeva, J. Anal. Chem. 56, 754 (2001).

    Article  Google Scholar 

  28. Yu. Yu. Lur’e, Handbook in Analytic Chemistry (Khimiya, Moscow, 1989) [in Russian].

    Google Scholar 

  29. R. K. Kvaratskheliya, Electrochemistry of Hydroxilamine (Metsniereba, Tbilisi, 1981) [in Russian].

    Google Scholar 

  30. M. V. Kuznetsov, Modern Study Methods of Solid Surface: Photoelectronic Spectroscopy and Diffraction, STM-Microscopy (UrO RAN, Yekaterinburg, 2010) [in Russian].

    Google Scholar 

  31. A. V. Lyubchenko, Physical Principles of Semiconductor Infrared Photoelectronics (Naukova Dumka, Kiev, 1984) [in Russian].

    Google Scholar 

  32. N. Kh. Abrikosov, V. F. Bankina, L. V. Poretskaya, E. V. Skudnova, and S. N. Chizhevskaya, Semiconductor Chalcogenides and Alloys on their Base (Nauka, Moscow, 1975) [in Russian].

    Google Scholar 

  33. B. V. Crist, Handbook of Monochromatic XPS Spectra: The Elements and Native Oxides (XPS Int., Ames, IA, 1999).

    Google Scholar 

  34. X. Liu, G. Liu, L. Wang, Y. Li, Y. Ma, and J. Ma, J. Power Sources 312, 199 (2016).

    ADS  Article  Google Scholar 

  35. A. B. M. O. Islam, and A. H. Bhuiyan, J. Mater. Sci. 16, 263 (2005).

    Google Scholar 

  36. A. Zhang, Q. Ma, Z. Wang, M. Lu, P. Yang, and G. Zhou, Mater. Chem. Phys. 124, 916 (2010).

    Article  Google Scholar 

  37. H. Kou, Y. Jiang, J. Li, S. Yu, and C. Wang, J. Mater. Chem. 22, 1950 (2012).

    Article  Google Scholar 

  38. Y. Liu, Q. Dong, H. Wei, Y. Ning, H. Sun, W. Tian, H. Zhang, and B. Yang, J. Phys. Chem. C 115, 9909 (2011).

    Article  Google Scholar 

  39. K. C. Sanal, L. S. Vikas, and M. K. Jayaraj, Appl. Surf. Sci. 297, 153 (2014).

    ADS  Article  Google Scholar 

  40. S. C. Riha, D. C. Johnson, and A. L. Prieto, J. Am. Chem. Soc. 133, 1383 (2011).

    Article  Google Scholar 

  41. A. S. Khomane, Arch. Appl. Sci. Res. 4, 1857 (2012).

    Google Scholar 

  42. A. Moysiadou, R. Koutsikou, and M. Bouroushian, Mater. Lett. 139, 112 (2015).

    Article  Google Scholar 

  43. A. Cho, S. Ahn, J. H. Yun, J. Gwak, S. K. Ahn, K. Shin, J. Yoo, H. Song, and K. Yoon, Thin Solid Films 546, 299 (2013).

    ADS  Article  Google Scholar 

  44. M. Kristl and J. Kristl, Chalcogenide Lett. 11, 59 (2014).

    Google Scholar 

  45. Al-Mamun, S. H. Firoz, and A. B. M. O. Islam, Indian J. Phys. 78, 377 (2004).

    Google Scholar 

  46. Y. Z. Li, X. D. Gao, C. Yang, and F. Q. Huang, J. Alloys Compd. 505, 623 (2010).

    Article  Google Scholar 

  47. R. H. Bari, V. Ganesan, S. Potadar, and L. A. Patil, Bull. Mater. Sci. 32, 37 (2009).

    Article  Google Scholar 

  48. R. S. Mane, S. P. Kajve, C. D. Lokhande, and S.-H. Han, Vacuum 80, 631 (2006).

    ADS  Article  Google Scholar 

  49. S. B. Ambade, R. S. Mane, S. S. Kale, S. H. Sonawane, A. V. Shaikh, and S.-H. Han, Appl. Surf. Sci. 253, 2123 (2006).

    ADS  Article  Google Scholar 

  50. S. A. Zolotovskaya, N. N. Posnov, P. V. Prokoshin, K. V. Yumashev, V. S. Gurin, and A. A. Alexeenko, Semiconductors 38, 812 (2004).

    ADS  Article  Google Scholar 

  51. V. S. Gurin, A. A. Alexeenko, E. A. Tyavlovskaya, and K. N. Kasparov, Thin Solid Films 516, 1464 (2008).

    ADS  Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

This study was supported by the government of the Russian Federation, program 211, project no. 02.A03.21.0006. The XPS studies carried out by M.V. Kuznetsov were supported by the Russian Science Foundation, project no. 17-12-01500.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. N. Maskaeva.

Additional information

Translated by E. Smorgonskaya

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Maskaeva, L.N., Fedorova, E.A., Markov, V.F. et al. Copper(I) Selenide Thin Films: Composition, Morphology, Structure, and Optical Properties. Semiconductors 52, 1334–1340 (2018). https://doi.org/10.1134/S1063782618100111

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063782618100111

Keywords

  • Selenide Films
  • Hydrochemical Deposition
  • Indirect Optical Transitions
  • Sodium Selenosulfate
  • Sitall Substrates