Skip to main content
Log in

Backward-Diode Heterostructure Based on a Zinc-Oxide Nanoarray Formed by Pulsed Electrodeposition and a Cooper-Iodide Film Grown by the SILAR Method

  • PHYSICS OF SEMICONDUCTOR DEVICES
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

A heterostructure promising for designing a backward diode is formed from a zinc-oxide nanorod array and a nanostructured copper-iodide film. The effect of modes of successive ionic layer adsorption and reaction (SILAR) deposition and the subsequent iodization of CuI films on smooth glass, mica, and fluorine-doped tin oxide (FTO) substrates and on the surface of electrodeposited nanostructured zinc-oxide arrays on the film structure and electrical and optical properties is investigated. A connection between the observed variations in the structure and properties of this material and intrinsic and iodination-induced point defects is established. It is found that the cause and condition for creating a backward-diode heterostructure based on a zinc-oxide nanoarray formed by pulsed electrodeposition and a copper-iodide film grown by the SILAR method is the formation of a p+-CuI degenerate semiconductor by the excessive iodination of layers of this nanostructured material through its developed surface. The n-ZnO/p+-CuI barrier heterostructure, which is fabricated for the first time, has the IV characteristic of a backward diode, the curvature factor of which (γ = 12 V–1) confirms its high Q factor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. Microelectronics to Nanoelectronics: Materials, Devices and Manufacturability, Ed. by A. B. Kaul (CRC, Taylor and Francis Group, New York, 2012).

    Google Scholar 

  2. M. Lundstrom and J. Guo, Nanoscale Transistors—Device Physics, Modeling and Simulation (Springer, New York, 2006).

    Google Scholar 

  3. M. Salimian, M. Ivanov, F. L. Deepak, D. Y. Petrovykh, I. Bdikin, M. Ferro, A. Kholkin, E. Titusa, and G. Goncalves, J. Mater. Chem. C 3, 11516 (2015).

    Article  Google Scholar 

  4. Q.-Q. Sun, Y.-J. Li, J.-L. He, W. Yang, P. Zhou, H.-L. Lu, S.-J. Ding, and D. W. Zhang, Appl. Phys. Lett. 102, 093104 (2013).

    Article  ADS  Google Scholar 

  5. H. Okumura, D. Martin, M. Malinverni, and N. Grandjean, Appl. Phys. Lett. 108, 072102 (2016).

    Article  ADS  Google Scholar 

  6. K. Zhang, H. Liang, Y. Liu, R. Shen, W. Guo, D. Wang, X. Xia, P. Tao, C. Yang, Y. Luo, and G. Du, Sci. Rep. 4, 6322 (2014).

    Article  ADS  Google Scholar 

  7. V. K. Khanna, Integrated Nanoelectronics: Nanoscale CMOS, Post-CMOS and Allied Nanotechnologies (Springer Nature, India, 2016).

    Book  Google Scholar 

  8. D. Kälblein, R. T. Weitz, H. J. Böttcher, F. Ante, U. Zschieschang, K. Kern, and H. Klauk, Nano Lett. 11, 5309 (2011).

    Article  ADS  Google Scholar 

  9. K. Gadani, D. Dhruv, Z. Joshi, H. Boricha, K. N. Rathod, M. J. Keshvani, N. A. Shah, and P. S. Solanki, Phys. Chem. Chem. Phys. 18, 17740 (2016).

    Article  Google Scholar 

  10. Z. Zhang, R. Rajavel, P. Deelman, and P. Fay, IEEE Microwave Wireless Compon. Lett. 21, 267 (2011).

    Article  Google Scholar 

  11. S. M. Sze and K. K. Ng, Physics of Semiconductor Devices, 3rd ed. (Wiley, New York, 2007).

    Google Scholar 

  12. K. S. Rzhevkin, Physical Principles of Semiconductor Devices Operation (Mosk. Gos. Univ., Moscow, 1986) [in Russian].

    Google Scholar 

  13. S. Agarwal and E. Yablonovitch, IEEE Trans. Electron Dev. 61, 1488 (2014).

    Article  ADS  Google Scholar 

  14. Z. Yang, M. Wang, J. Ding, Z. Sun, L. Li, J. Huang, J. Liu, and J. Shao, ACS Appl. Mater. Interfaces 7, 21235 (2015).

    Article  Google Scholar 

  15. S. M. Hatch, J. Briscoe, and S. Dunn, Adv. Mater. 25, 867 (2013).

    Article  Google Scholar 

  16. K. Ding, Q. C. Hu, D. G. Chen, Q. H. Zheng, X. G. Xue, and F. Huang, IEEE Electron Dev. Lett. 33, 1750 (2012).

    Article  ADS  Google Scholar 

  17. F.-L. Schein, H. Wenckstern, and M. Grundmann, Appl. Phys. Lett. 102, 092109 (2013).

    Article  ADS  Google Scholar 

  18. C. Yang, M. Kneiß, F.-L. Schein, M. Lorenz, and M. Grundmann, Sci. Rep. 6, 21937 (2016).

    Article  ADS  Google Scholar 

  19. C. Xiong and R. Yao, Optik 126, 1951 (2015).

    Article  ADS  Google Scholar 

  20. Transparent Electronics: From Synthesis to Applications, Ed. by A. Facchetti and T. J. Marks (Wiley, Chichester, 2010).

    Google Scholar 

  21. C. Liu, M. Peng, A. Yu, J. Liu, M. Song, Y. Zhang, and J. Zhai, Nano Energy 26, 417 (2016).

    Article  Google Scholar 

  22. Z. Yang, M. Wang, S. Shukla, Y. Zhu, J. Deng, H. Ge, X. Wang, and Q. Xiong, Sci. Rep. 5, 11377 (2015).

    Article  ADS  Google Scholar 

  23. B. R. Sankapal, E. Goncalves, A. Ennaoui, and M. C. Lux-Steiner, Thin Solid Films 451–452, 128 (2004).

    Article  Google Scholar 

  24. R. N. Bulakhe, N. M. Shinde, R. D. Thorat, S. S. Nikam, and C. D. Lokhande, Curr. Appl. Phys. 13, 1661 (2013).

    Article  ADS  Google Scholar 

  25. B. R. Sankapal, A. Ennaoui, T. Guminskaya, T. Dittrich, W. Bohne, J. Ro[umlaut]hrich, E. Strub, and M. C. Lux-Steiner, Thin Solid Films 480–481, 142 (2005).

    Article  Google Scholar 

  26. S. L. Dhere, S. S. Latthe, C. Kappenstein, S. K. Mukherjee, and A. V. Rao, Appl. Surf. Sci. 256, 3967 (2010).

    Article  ADS  Google Scholar 

  27. N. P. Klochko, V. R. Kopach, G. S. Khrypunov, V. E. Korsun, N. D. Volkova, V. N. Lyubov, M. V. Kirichenko, A. V. Kopach, D. O. Zhadan, and A. N. Otchenashko, Semiconductors 51, 789 (2017)].

    Article  ADS  Google Scholar 

  28. N. Yamada, R. Ino, and Y. Ninomiya, Chem. Mater. 28, 4971 (2016).

    Article  Google Scholar 

  29. Z. Liu, Y. Pei, H. Geng, J. Zhou, X. Meng, W. Cai, W. Liu, and J. Sui, Nano Energy 13, 554 (2015).

    Article  Google Scholar 

  30. Q. Yang, C. Hu, S. Wang, Y. Xi, and K. Zhang, J. Phys. Chem. C 117, 5515 (2013).

    Article  Google Scholar 

  31. N. Chahmat, A. Haddad, A. Ain-Souya, R. Ganfoudi, N. Attaf, M. S. Aida, and M. Ghers, J. Mod. Phys. 3, 1781 (2012).

    Article  Google Scholar 

  32. R. R. Ahire, B. R. Sankapal, and C. D. Lokhande, Mater. Res. Bull. 36, 199 (2001).

    Article  Google Scholar 

  33. N. P. Klochko, G. S. Khrypunov, Yu. A. Myagchenko, E. E. Melnychuk, V. R. Kopach, E. S. Klepikova, V. N. Lyubov, and A. V. Kopach, Semiconductors 48, 531 (2014).

    Article  ADS  Google Scholar 

  34. N. P. Klochko, E. S. Klepikova, G. S. Khrypunov, N. D. Volkova, V. R. Kopach, V. N. Lyubov, M. V. Kirichenko, and A. V. Kopach, Semiconductors 49, 214 (2015).

    Article  ADS  Google Scholar 

  35. N. P. Klochko, K. S. Klepikova, I. I. Tyukhov, Y. O. Myagchenko, E. E. Melnychuk, V. R. Kopach, G. S. Khrypunov, V. M. Lyubov, A. V. Kopach, V. V. Starikov, and M. V. Kirichenko, Solar Energy 117, 1 (2015).

    Article  ADS  Google Scholar 

  36. N. P. Klochko, K. S. Klepikova, I. I. Tyukhov, Y. O. Myagchenko, E. E. Melnychuk, V. R. Kopach, G. S. Khrypunov, V. M. Lyubov, and A. V. Kopach, Solar Energy 120, 330 (2015).

    Article  ADS  Google Scholar 

  37. N. P. Klochko, E. S. Klepikova, V. R. Kopach, G. S. Khrypunov, Yu. A. Myagchenko, E. E. Melnychuk, V. N. Lyubov, and A. V. Kopach, Semiconductors 50, 352 (2016).

    Article  ADS  Google Scholar 

  38. D. K. Schroder, Semiconductor Material and Device Characterization, 3rd ed. (Wiley, New York, 2006).

    Google Scholar 

  39. T. Prasada Rao and M. C. Santhoshkumar, Appl. Surf. Sci. 255, 4579 (2009).

    Article  ADS  Google Scholar 

  40. A. Axelevitch and G. Golan, Facta Univ., Ser.: Electron. Energet. 26, 187 (2013).

    Google Scholar 

  41. V. R. Kopach, K. S. Klepikova, N. P. Klochko, I. I. Tyukhov, G. S. Khrypunov, V. E. Korsun, V. M. Lyubov, A. V. Kopach, R. V. Zaitsev, and M. V. Kirichenko, Solar Energy 136, 23 (2016).

    Article  ADS  Google Scholar 

  42. V. R. Kopach, E. S. Klepikova, N. P. Klochko, G. S. Khrypunov, V. E. Korsun, V. N. Lyubov, M. V. Kirichenko, and A. V. Kopach, Semiconductors 51, 335 (2017).

    Article  ADS  Google Scholar 

  43. Zinc Oxide Materials for Electronic and Optoelectronic Device Applications, Ed. by C. W. Litton, D. C. Reynolds, and T. C. Collins (Wiley, Chichester, 2011).

    Google Scholar 

  44. H. Morkoç and Ü. Özgür, Zinc Oxide: Fundamentals, Materials and Device Technology (Wiley-VCH, Weinheim, 2009).

    Book  Google Scholar 

  45. M. Grundmann, F.-L. Schein, M. Lorenz, T. Böntgen, J. Lenzner, and H. Wenckstern, Phys. Status Solidi A 210, 1671 (2013).

    Article  Google Scholar 

  46. C. Yang, M. Kneiß, M. Lorenz, and M. Grundmann, Proc. Natl. Acad. Sci. U.S.A. 113, 12929 (2016).

    Article  ADS  Google Scholar 

  47. J. Wang, J. Li, and S.-S. Li, J. Appl. Phys. 110, 054907 (2011).

    Article  ADS  Google Scholar 

  48. G. I. Epifanov, Physical Principles of Microelectronics (Sov. Radio, Moscow, 1971) [in Russian].

    Google Scholar 

  49. K. V. Shalimova, Physics of Semiconductors (Energoatomizdat, Moscow, 1985) [in Russian].

    Google Scholar 

  50. Y. Wang, H.-B. Fang, R.-Q. Ye, Y.-Z. Zheng, N. Li, and X. Tao, RSC Adv. 6, 24430 (2016).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. P. Klochko.

Additional information

Translated by E. Bondareva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Klochko, N.P., Kopach, V.R., Khrypunov, G.S. et al. Backward-Diode Heterostructure Based on a Zinc-Oxide Nanoarray Formed by Pulsed Electrodeposition and a Cooper-Iodide Film Grown by the SILAR Method. Semiconductors 52, 1203–1214 (2018). https://doi.org/10.1134/S1063782618090063

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063782618090063

Keywords

Navigation