, Volume 52, Issue 6, pp 717–722 | Cite as

Forbidden Resonant Raman Scattering in GaAs/AlAs Superlattices: Experiment and Calculations

  • V. A. Volodin
  • V. A. Sachkov
  • M. P. Sinyukov
Spectroscopy, Interaction with Radiation


The Raman spectra of GaAs/AlAs(100) superlattices are calculated and studied experimentally for various wave-vector directions. The experiments are performed when applying a confocal optical microscope combined with a micro-Raman spectrometer for various scattering geometries both for phonons with a wave vector directed along the normal to a superlattice and in the in-plane geometry. The frequencies and eigenvectors of phonons are calculated in the extended Born model approximation taking into account Coulomb interaction in the rigid-ion approximation. The Raman spectra are calculated in the scope of the deformation- potential mechanism; herewith, it turns out that additional peaks, which are not described in the scope of this approach, appear in the experimental spectra. It seems likely that these peaks appear due to the manifestation of Raman scattering forbidden by selection rules under resonance conditions. An attempt is made to explain the appearance of these peaks in the experimental spectra within the scope of inelastic phonon scattering at bound charges (phonons with a large dipole moment).


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Zh. I. Alferov, Semiconductors 32, 1 (1998).ADSCrossRefGoogle Scholar
  2. 2.
    A. P. Silin, Sov. Phys. Usp. 28, 972 (1985).ADSCrossRefGoogle Scholar
  3. 3.
    Light Scattering in Solids V: Superlattices and other Microstructures, Ed. by M. Cardona and G. Guntherodt (Springer, Berlin, 1989).Google Scholar
  4. 4.
    S. M. Rytov, Sov. Phys. JETP 2, 466 (1955).Google Scholar
  5. 5.
    A. S. Barker, Jr., J. L. Merz, and A. C. Gossard, Phys. Rev. B 17, 3181 (1978).ADSCrossRefGoogle Scholar
  6. 6.
    R. Merlin, C. Colvard, M. V. Klein, H. Morkoc, A. Y. Cho, and A. C. Gossard, Appl. Phys. Lett. 36, 43 (1980).ADSCrossRefGoogle Scholar
  7. 7.
    B. Jusserand, D. Paquet, J. Kervarec, and A. Regreny, J. Phys. 45, C5 (1984).Google Scholar
  8. 8.
    A. K. Sood, J. Menendez, M. Cardona, and K. Ploog, Phys. Rev. Lett. 54, 2115 (1985).ADSCrossRefGoogle Scholar
  9. 9.
    M. Cardona, Superlatt. Microstruct. 5, 27 (1989).ADSCrossRefGoogle Scholar
  10. 10.
    V. A. Volodin, M. D. Efremov, V. V. Preobrazhenskii, B. R. Semyagin, and V. V. Bolotov, Superlatt. Microstruct. 26, 11 (1999).ADSCrossRefGoogle Scholar
  11. 11.
    A. Huber, T. Egeler, W. Ettmiiller, H. Rothfritz, G. Trankle, and G. Abstreiter, Superlatt. Microstruct. 9, 309 (1991).ADSCrossRefGoogle Scholar
  12. 12.
    R. Hessmer, A. Huber, T. Egeler, M. Haines, G. Trankle, G. Weimann, and G. Abstreiter, Phys. Rev. B 46, 4071 (1992).ADSCrossRefGoogle Scholar
  13. 13.
    G. Scamarcio, M. Haines, G. Abstreiter, E. Molinari, S. Baroni, A. Fischer, and K. Ploog, Phys. Rev. B 47, 1483 (1993).ADSCrossRefGoogle Scholar
  14. 14.
    A. Fainstein, P. Etchegoin, M. P. Chamberlain, M. Cardona, K. Totemeyer, and K. Eberl, Phys. Rev. B 51, 14448 (1995).ADSCrossRefGoogle Scholar
  15. 15.
    M. Zunke, R. Schorer, G. Abstreiter, W. Klein, G. Weimann, and M. P. Chamberlain, Solid State Commun. 93, 847 (1995).ADSCrossRefGoogle Scholar
  16. 16.
    V. A. Volodin, M. P. Sinyukov, V. A. Sachkov, M. Stoffel, H. Rinnert, and M. Vergnat, Europhys. Lett. 105, 16003 (2014).ADSCrossRefGoogle Scholar
  17. 17.
    V. A. Volodin and M. P. Sinyukov, JETP Lett. 99, 396 (2014).ADSCrossRefGoogle Scholar
  18. 18.
    V. A. Volodin, V. A. Sachkov, and M. P. Sinyukov, J. Exp. Theor. Phys. 120, 781 (2015).ADSCrossRefGoogle Scholar
  19. 19.
    V. A. Volodin, V. A. Sachkov, and I. S. Golovin, Phys. Express 4, 11 (2014).Google Scholar
  20. 20.
    Shang-Fen Ren, Hanyou Chu, and Yia-Chung Chang, Phys. Rev. B 37, 8899 (1988).ADSCrossRefGoogle Scholar
  21. 21.
    Shang-Fen Ren and G. Qin, Solid State Commun. 121, 171 (2002).ADSCrossRefGoogle Scholar
  22. 22.
    M. P. Chamberlain, M. Cardona, and B. K. Ridley, Phys. Rev. B 48, 14356 (1993).ADSCrossRefGoogle Scholar
  23. 23.
    R. M. Martin, Phys. Rev. B 4, 3676 (1971).ADSCrossRefGoogle Scholar
  24. 24.
    Light Scattering in Solids, Ed. by M. Cardona (Springer, Berlin, 1975), Vol.1.Google Scholar
  25. 25.
    M. V. Vol’kenshtein, Dokl. Akad. Nauk SSSR 32, 185 (1941).Google Scholar
  26. 26.
    V. A. Sachkov, Extended Abstract of Cand. Sci. Dissertation (Omsk, 2011).Google Scholar
  27. 27.
    L. N. Ovander and N. S. Tyu, Phys. Status Solidi B 91, 763 (1979).ADSCrossRefGoogle Scholar
  28. 28.
    V. A. Volodin, V. A. Sachkov, and M. P. Sinyukov, J. Exp. Theor. Phys. 123, 163 (2016).ADSCrossRefGoogle Scholar
  29. 29.
    H. Fröhlich, Adv. Phys. 3, 325 (1954).ADSCrossRefGoogle Scholar
  30. 30.
    H. Fujimoto, C. Hamaguchi, T. Nakazava, K. Taniguchi, K. Imanichi, H. Kato, and Y. Watanabe, Phys. Rev. B 41, 7593 (1990).ADSCrossRefGoogle Scholar
  31. 31.
    A. W. E. Minnaert, A. Yu. Silov, W. van der Vleuten, J. E. M. Haverkoff, and J. H. Wolter, Phys. Rev. B 63, 075303 (2001).ADSCrossRefGoogle Scholar
  32. 32.
    V. A. Volodin, G. K. Krivyakin, V. A. Sachkov, and M. P. Sinyukov, in Proceedings of the 24th International Sympoisum on Nanostructures: Physics and Technology, June 27–July 1, 2016, St. Petersburg, p.274.Google Scholar
  33. 33.
    M. Born and X. Huang, Dynamical Theory of Crystal Lattices (Clarendon, Oxford, 1954).zbMATHGoogle Scholar
  34. 34.
    P. Castrillo, L. Colombo, and G. Armelles, Phys. Rev. B 49, 10362 (1994).ADSCrossRefGoogle Scholar
  35. 35.
    A. S. Barker, Jr. and R. Loudon, Rev. Mod. Phys. 44, 18 (1972).ADSCrossRefGoogle Scholar
  36. 36.
    I. N. Meshkov and B. V. Chirikov, Electromagnetic Field, Part. 2: Electromagnetic Waves and Optics (Nauka, Novosibirsk, 1987) [in Russian].Google Scholar
  37. 37.
    V. A. Gaisler, Extended Abstract of Doctoral Dissertation (Novosibirsk, 1996).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • V. A. Volodin
    • 1
    • 2
  • V. A. Sachkov
    • 3
  • M. P. Sinyukov
    • 1
  1. 1.Rzhanov Institute of Semiconductor Physics, Siberian BranchRussian Academy of SciencesNovosibirskRussia
  2. 2.Novosibirsk State UniversityNovosibirskRussia
  3. 3.Omsk Scientific Center, Siberian BranchRussian Academy of SciencesOmskRussia

Personalised recommendations