Semiconductors

, Volume 52, Issue 6, pp 692–701 | Cite as

Quasi-Classical Model of the Static Electrical Conductivity of Heavily Doped Degenerate Semiconductors at Low Temperatures

  • N. A. Poklonski
  • S. A. Vyrko
  • A. N. Dzeraviaha
Electronic Properties of Semiconductors
  • 5 Downloads

Abstract

Germanium, silicon, gallium arsenide, and indium antimonide n-type crystals on the metal side of the insulator–metal transition (Mott transition) are considered. In the quasi-classical approximation, the static (direct current) electrical conductivity and the drift mobility of electrons of the c band, and electrostatic fluctuations of their potential energy and the mobility edge are calculated. It is considered that a single event of the elastic Coulomb scattering of a mobile electron occurs only in a spherical region of the crystal matrix with an impurity ion at the center. The results of calculations using the proposed formulas without using fitting parameters are numerically consistent with experimental data in a wide range of concentrations of hydrogenlike donors at their weak and moderate compensation by acceptors.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    T. T. Mnatsakanov, M. E. Levinshtein, L. I. Pomortseva, and S. N. Yurkov, Semiconductors 38, 56 (2004).ADSCrossRefGoogle Scholar
  2. 2.
    G. B. Lesovik and I. A. Sadovskyy, Phys. Usp. 54, 1007 (2011).ADSCrossRefGoogle Scholar
  3. 3.
    V. F. Gantmakher, Low Temp. Phys. 39, 2 (2013).ADSCrossRefGoogle Scholar
  4. 4.
    Radiation Effects in Semiconductors, Ed. by K. Iniewski (CRC, Boca Raton, FL, 2011).Google Scholar
  5. 5.
    A. H. Johnston, in Proceedings of the 4th International Workshop on Radiation Effects on Semiconductor Devices for Space Application, Tsukuba, Japan, October 11–13, 2000, p.1.Google Scholar
  6. 6.
    A. A. Lebedev, V. V. Kozlovskii, N. B. Strokan, D. V. Davydov, A. M. Ivanov, A. M. Strel’chuk, and R. Yakimova, Semiconductors 36, 1270 (2002).ADSCrossRefGoogle Scholar
  7. 7.
    B. J. Baliga, Fundamentals of Power Semiconductor Devices (Springer, Berlin, 2008).CrossRefGoogle Scholar
  8. 8.
    I. V. Grekhov and G. A. Mesyats, Phys. Usp. 48, 703 (2005).ADSCrossRefGoogle Scholar
  9. 9.
    M. Cuevas and H. Fritzsche, Phys. Rev. 139, A1628 (1965).ADSCrossRefGoogle Scholar
  10. 10.
    M. Cuevas and H. Fritzsche, Phys. Rev. 137, A1847 (1965).ADSCrossRefGoogle Scholar
  11. 11.
    P. W. Chapman, O. N. Tufte, J. D. Zook, and D. Long, J. Appl. Phys. 34, 3291 (1963).ADSCrossRefGoogle Scholar
  12. 12.
    C. Yamanouchi, K. Mizuguchi, and W. Sasaki, J. Phys. Soc. Jpn. 22, 859 (1967).ADSCrossRefGoogle Scholar
  13. 13.
    V. M. Glazov, Mater. Elektron. Tekh., No. 2, 15 (1998).Google Scholar
  14. 14.
    N. F. Mott, Metal–Insulator Transitions (Taylor and Francis, London, 1990).Google Scholar
  15. 15.
    N. A. Poklonskii, S. A. Vyrko, and A. G. Zabrodskii, Phys. Solid State 46, 1101 (2004).ADSCrossRefGoogle Scholar
  16. 16.
    V. L. Bonch-Bruevich and S. G. Kalashnikov, Semiconductor Physics (Nauka, Moscow, 1990), Chap. 19 [in Russian].Google Scholar
  17. 17.
    N. A. Poklonskii and S. A. Vyrko, J. Appl. Spectrosc. 69, 434 (2002).CrossRefGoogle Scholar
  18. 18.
    N. A. Poklonski, S. A. Vyrko, V. I. Yatskevich, and A. A. Kocherzhenko, J. Appl. Phys. 93, 9749 (2003).ADSCrossRefGoogle Scholar
  19. 19.
    N. A. Poklonski, A. A. Kocherzhenko, S. A. Vyrko, and A. T. Vlassov, Phys. Status Solidi B 244, 3703 (2007).ADSCrossRefGoogle Scholar
  20. 20.
    N. L. Lavrik and V. P. Voloshin, J. Chem. Phys. 114, 9489 (2001).ADSCrossRefGoogle Scholar
  21. 21.
    J. Robertson, Philos. Mag. B 66, 199 (1992).ADSCrossRefGoogle Scholar
  22. 22.
    B. M. Askerov, Electron Transport Phenomena in Semiconductors (World Scientific, Singapore, 1994).CrossRefGoogle Scholar
  23. 23.
    B. I. Shklovskii and A. L. Efros, Electronic Properties of Doped Semiconductors (Springer, Berlin, 1984).CrossRefGoogle Scholar
  24. 24.
    E. O. Kane, Solid-State Electron. 28, 3 (1985).ADSCrossRefGoogle Scholar
  25. 25.
    N. A. Poklonski, S. A. Vyrko, O. N. Poklonskaya, and A. G. Zabrodskii, Semiconductors 50, 722 (2016).ADSCrossRefGoogle Scholar
  26. 26.
    N. A. Poklonski, S. A. Vyrko, O. N. Poklonskaya, A. I. Kovalev, and A. G. Zabrodskii, J. Appl. Phys. 119, 245701 (2016).ADSCrossRefGoogle Scholar
  27. 27.
    Quantum and Semi-Classical Percolation and Breakdown in Disordered Solids, Ed. by A. K. Sen, K. K. Bardhan, and B. K. Chakrabarti (Springer, Berlin, 2009).Google Scholar
  28. 28.
    J. M. Ziman, Models of Disorder: The Theoretical Physics of Homogeneously Disordered Systems (Cambridge Univ. Press, Cambridge, New York, 1979; Mir, Moscow, 1982), Chap.13.Google Scholar
  29. 29.
    N. A. Poklonski, S. A. Vyrko, and S. L. Podenok, Statistical Physics of Semiconductors (KomKniga, Moscow, 2005) [in Russian].Google Scholar
  30. 30.
    A. I. Anselm, Introduction to Semiconductor Theory (Prentice-Hall, Englewood Cliffs, 1981; Nauka, Moscow, 1978), Chap.8.Google Scholar
  31. 31.
    K. Seeger, Semiconductor Physics: An Introduction (Springer, Berlin, 2004), Chap.6.CrossRefMATHGoogle Scholar
  32. 32.
    V. Palenskis, World J. Condens. Matter Phys. 4, 123 (2014).ADSCrossRefGoogle Scholar
  33. 33.
    E. Conwell and V. F. Weisskopf, Phys. Rev. 77, 388 (1950).ADSCrossRefGoogle Scholar
  34. 34.
    B. K. Ridley, Quantum Processes in Semiconductors (Oxford Univ. Press, Oxford, 2013), Chap.4.CrossRefMATHGoogle Scholar
  35. 35.
    V. G. Baryshevskii, I. D. Feranchuk, and P. B. Kats, Phys. Rev. A 70, 052701 (2004).ADSCrossRefGoogle Scholar
  36. 36.
    C. Hamaguchi, Basic Semiconductor Physics (Springer, Berlin, 2010), Chap.6.CrossRefMATHGoogle Scholar
  37. 37.
    A. Ya. Shik, Sov. Phys. Semicond. 17, 1422 (1983).Google Scholar
  38. 38.
    V. A. Gergel’ and R. A. Suris, Sov. Phys. Semicond. 12, 1224 (1978).Google Scholar
  39. 39.
    D. Chattopadhyay and H. J. Queisser, Rev. Mod. Phys. 53, 745 (1981).ADSCrossRefGoogle Scholar
  40. 40.
    M. J. Katz, Phys. Rev. 140, A1323 (1965).ADSCrossRefGoogle Scholar
  41. 41.
    H. Fritzsche, J. Phys. Chem. Solids 6, 69 (1958).ADSCrossRefGoogle Scholar
  42. 42.
    Y. Furukawa, J. Phys. Soc. Jpn. 17, 630 (1962).ADSCrossRefGoogle Scholar
  43. 43.
    J. R. Meyer and F. J. Bartoli, Phys. Rev. B 36, 5989 (1987).ADSCrossRefGoogle Scholar
  44. 44.
    J. B. Krieger and T. Meeks, Phys. Rev. B 8, 2780 (1973).ADSCrossRefGoogle Scholar
  45. 45.
    P. I. Baranskii, V. V. Kolomoets, and Yu. A. Okhrimenko, Sov. Phys. Semicond. 19, 1087 (1985).Google Scholar
  46. 46.
    J. B. Krieger, J. Gruenebaum, and T. Meeks, Phys. Rev. B 9, 3627 (1974).ADSCrossRefGoogle Scholar
  47. 47.
    N. A. Yakusheva and G. M. Beloborodov, Neorg. Mater. 26, 9 (1990).Google Scholar
  48. 48.
    E. Kuphal, A. Schlachetzki, and A. Pöcker, Appl. Phys. 17, 63 (1978).ADSCrossRefGoogle Scholar
  49. 49.
    T. Slupinski, M. Molas, and J. Papierska, Acta Phys. Polon. A 116, 979 (2009).CrossRefGoogle Scholar
  50. 50.
    G. B. Stringfellow, J. Appl. Phys. 50, 4178 (1979).ADSCrossRefGoogle Scholar
  51. 51.
    D. Lancefield, A. R. Adams, and M. A. Fisher, J. Appl. Phys. 62, 2342 (1987).ADSCrossRefGoogle Scholar
  52. 52.
    R. T. Bate, R. D. Baxter, F. J. Reid, and A. C. Beer, J. Phys. Chem. Solids 26, 1205 (1965).ADSCrossRefGoogle Scholar
  53. 53.
    V. I. Petrovskii, N. N. Solov’ev, E. M. Omel’yanovskii, and V. S. Ivleva, Sov. Phys. Semicond. 12, 1132 (1978).Google Scholar
  54. 54.
    V. S. Ivleva, M. N. Kevorkov, R. S. Mitrofanova, A. N. Popkov, and V. I. Selyanina, Sov. Phys. Semicond. 12, 308 (1978).Google Scholar
  55. 55.
    E. Litwin-Staszewska, W. Szymanska, and R. Piotrzkowski, Phys. Status Solidi B 106, 551 (1981).ADSCrossRefGoogle Scholar
  56. 56.
    O. Madelung, Semiconductors: Data Handbook (Springer, Berlin, 2004).CrossRefGoogle Scholar
  57. 57.
    S. Adachi, Properties of Semiconductor Alloys: Group-IV, III–V and II–VI Semiconductors (Wiley, Chippenham, 2009).CrossRefGoogle Scholar
  58. 58.
    V. T. Bublik, S. S. Gorelik, and A. N. Dubrovina, Sov. Phys. Solid State 10, 2247 (1968).Google Scholar
  59. 59.
    V. V. Emtsev, M. I. Klinger, and T. V. Mashovets, JETP Lett. 19, 301 (1974).ADSGoogle Scholar
  60. 60.
    R. S. Sorbello, Phys. Status Solidi B 100, 347 (1980).ADSCrossRefGoogle Scholar
  61. 61.
    M. Shur, GaAs Devices and Circuits (Plenum, New York, London, 1986; Mir, Moscow, 1991).Google Scholar
  62. 62.
    R. P. Joshi and D. K. Ferry, Semicond. Sci. Technol. 7, B319 (1992).CrossRefGoogle Scholar
  63. 63.
    H. Brooks, Phys. Rev. 83, 879 (1951).Google Scholar
  64. 64.
    L. P. Kudrin, Statistical Plasma Physics (Atomizdat, Moscow, 1974), Chaps. 1, 2 [in Russian].Google Scholar
  65. 65.
    D. A. Frank-Kamenetskii, Lectures on Plasma Physics (Atomizdat, Moscow, 1968), Chap. 1 [in Russian].Google Scholar
  66. 66.
    A. Schmid, Z. Phys. 271, 251 (1974).ADSCrossRefGoogle Scholar
  67. 67.
    Y. J. Zhang, Z. Q. Li, and J. J. Lin, Eur. Phys. Lett. 103, 47002 (2013).ADSCrossRefGoogle Scholar
  68. 68.
    A. V. Dmitriev, Sov. Phys. Solid State 32, 2115 (1990).Google Scholar
  69. 69.
    V. I. Okulov, Low Temp. Phys. 30, 897 (2004).ADSCrossRefGoogle Scholar
  70. 70.
    B. M. Smirnov, Sov. Phys. Usp. 25, 854 (1982).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • N. A. Poklonski
    • 1
  • S. A. Vyrko
    • 1
  • A. N. Dzeraviaha
    • 1
  1. 1.Belarusian State UniversityMinskBelarus

Personalised recommendations