Advertisement

Semiconductors

, Volume 52, Issue 6, pp 760–765 | Cite as

Effect of the Dehydrogenation of Graphane on Its Mechanical and Electronic Properties

  • L. A. Openov
  • A. I. Podlivaev
Carbon Systems
  • 14 Downloads

Abstract

The effect of the desorption of hydrogen on the mechanical characteristics and electronic structure of the armchair conformation of graphane is studied in the context of the nonorthogonal tight-binding model. It is shown that the mechanical stiffness and the Poisson ratio nonmonotonically depend on the hydrogen content and take minimum values at a hydrogen vacancy content of ~50% and ~30%, respectively. As hydrogen is desorbed, the characteristic peaks of the phonon density of states are rapidly reduced. In the initial stage of desorption, local energy levels are formed in the band gap. As the number of hydrogen vacancies is increased, these levels form an impurity band, in which the Fermi level is located.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Science (Washington, DC, U. S.) 306, 666 (2004).ADSCrossRefGoogle Scholar
  2. 2.
    A. K. Geim and K. S. Novoselov, Nat. Mater. 6, 183 (2007).ADSCrossRefGoogle Scholar
  3. 3.
    Y.-W. Son, M. L. Cohen, and S. G. Louie, Phys. Rev. Lett. 97, 216803 (2006).ADSCrossRefGoogle Scholar
  4. 4.
    M. Y. Han, B. Özyilmaz, Y. Zhang, and P. Kim, Phys. Rev. Lett. 98, 206805 (2007).ADSCrossRefGoogle Scholar
  5. 5.
    L. A. Chernozatonskii, P. B. Sorokin, E. E. Belova, J. Bryuning, and A. S. Fedorov, JETP Lett. 85, 77 (2007).ADSCrossRefGoogle Scholar
  6. 6.
    J. O. Sofo, A. S. Chaudhari, and G. D. Barber, Phys. Rev. B 75, 153401 (2007).ADSCrossRefGoogle Scholar
  7. 7.
    D. C. Elias, R. R. Nair, T. M. G. Mohiuddin, S. V. Morozov, P. Blake, M. P. Halsall, A. C. Ferrari, D. W. Boukhvalov, M. I. Katsnelson, A. K. Geim, and K. S. Novoselov, Science (Washington, DC, U. S.) 323, 610 (2009).ADSCrossRefGoogle Scholar
  8. 8.
    H. Sahin, O. Leenaerts, S. K. Singh, and F. M. Peeters, WIREs Comput. Mol. Sci. 5, 255 (2015).CrossRefGoogle Scholar
  9. 9.
    T. E. Belenkova, V. M. Chernov, and E. A. Belenkov, Radioelektron., Nanosist., Inform. Tekhnol., No. 8, 49 (2016).Google Scholar
  10. 10.
    E. Cadelano, P. L. Palla, S. Giordano, and L. Colombo, Phys. Rev. B 82, 235414 (2010).ADSCrossRefGoogle Scholar
  11. 11.
    R. E. Mapasha, M. P. Molepo, and N. Chetty, Physica E 79, 52 (2016).ADSCrossRefGoogle Scholar
  12. 12.
    H. Sahin, C. Ataca, and S. Ciraci, Appl. Phys. Lett. 95, 222510 (1009).ADSCrossRefGoogle Scholar
  13. 13.
    P. Chandrachud, B. Pujari, S. Halder, B. Sanyal, and D. G. Kanhere, J. Phys.: Condens. Matter 22, 465502 (2010).ADSGoogle Scholar
  14. 14.
    L. A. Openov and A. I. Podlivaev, JETP Lett. 90, 459 (2009).ADSCrossRefGoogle Scholar
  15. 15.
    C. D. Reddy and Y.-W. Zhang, Carbon 69, 86 (2014).CrossRefGoogle Scholar
  16. 16.
    J. W. Jiang, T. Chang, and X. Guo, Nanoscale 8, 15948 (2016).CrossRefGoogle Scholar
  17. 17.
    R. Ansari, M. Mirnezhad, and H. Rouhi, Solid State Commun. 201, 1 (2015).ADSCrossRefGoogle Scholar
  18. 18.
    O. Leenaerts, H. Peelaers, A. D. Hernandez-Nieves, B. Partoens, and F. M. Peeters, Phys. Rev. B 82, 195436 (2010).ADSCrossRefGoogle Scholar
  19. 19.
    M. Topsacal, S. Cahangirov, and S. Ciraci, Appl. Phys. Lett. 96, 091912 (2010).ADSCrossRefGoogle Scholar
  20. 20.
    L. A. Openov and A. I. Podlivaev, Tech. Phys. Lett. 36, 31 (2010).ADSCrossRefGoogle Scholar
  21. 21.
    H.-C. Huang, S-Y. Lin, C.-L. Wu, and M.-F. Lin, Carbon 103, 84 (2016).CrossRefGoogle Scholar
  22. 22.
    C. D. Reddy, S. Rajendran, and K. M. Liew, Nanotechnology 17, 864 (2006).ADSCrossRefGoogle Scholar
  23. 23.
    M. M. Maslov, A. I. Podlivaev, and K. P. Katin, Mol. Simul. 42, 305 (2016).CrossRefGoogle Scholar
  24. 24.
    A. I. Podlivaev and L. A. Openov, Semiconductors 51, 213 (2017).ADSCrossRefGoogle Scholar
  25. 25.
    A. I. Podlivaev and L. A. Openov, Semiconductors 51, 636 (2017).ADSCrossRefGoogle Scholar
  26. 26.
    H. Peelaers, A. D. Hernandez-Nieves, O. Leenaerts, B. Partoens, and F. M. Peeters, Appl. Phys. Lett. 98, 051914 (2011).ADSCrossRefGoogle Scholar
  27. 27.
    C. Lee, X. Wei, J. W. Kysar, and J. Hone, Science 321, 385 (2008).ADSCrossRefGoogle Scholar
  28. 28.
    E. Munoz, A. K. Singh, M. A. Ribas, E. S. Penev, and B. I. Yakobson, Diamond Rel. Mater. 19, 368 (2010).ADSCrossRefGoogle Scholar
  29. 29.
    B. D. Annin and N. I. Ostrosablin, Prikl. Mekh. Prom. Fiz. 49, 131 (2008).Google Scholar
  30. 30.
    L. A. Openov and A. I. Podlivaev, Phys. Solid State 59, 1267 (2017).ADSCrossRefGoogle Scholar
  31. 31.
    J.-W. Jiang and H. S. Park, Nano Lett. 16, 2657 (2016).ADSCrossRefGoogle Scholar
  32. 32.
    S. Lebģraveue, M. Klintenberg, O. Eriksson, and M. I. Katsnelson, Phys. Rev. B 79, 245117 (2009).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.National Nuclear Research University “MEPhI”MoscowRussia

Personalised recommendations