Semiconductors

, Volume 52, Issue 6, pp 789–796 | Cite as

Effect of the Sapphire-Nitridation Level and Nucleation-Layer Enrichment with Aluminum on the Structural Properties of AlN Layers

  • T. V. Malin
  • D. S. Milakhin
  • V. G. Mansurov
  • Yu. G. Galitsyn
  • A. S. Kozhuhov
  • V. V. Ratnikov
  • A. N. Smirnov
  • V. Yu. Davydov
  • K. S. Zhuravlev
Fabrication, Treatment, and Testing of Materials and Structures
  • 6 Downloads

Abstract

The effect of atomic aluminum deposited onto sapphire substrates with different nitridation levels on the quality of AlN layers grown by ammonia molecular-beam epitaxy is investigated. The nitridation of sapphire with the formation of ~1 monolayer of AlN is shown to ensure the growth of layers with a smoother surface and better crystal quality than in the case of the formation of a nitrided AlN layer with a thickness of ~2 monolayers. It is demonstrated that the change in the duration of exposure of nitrided substrates to the atomic aluminum flux does not significantly affect the parameters of subsequent AlN layers.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Strite and H. Morkoc, J. Vac. Sci. Technol. 10, 1237 (1992).CrossRefGoogle Scholar
  2. 2.
    T. Yamaguchi, T. Araki, Y. Saito, K. Kano, H. Kanazawa, Y. Nanishi, N. Teraguchi, and A. Suzuki, J. Cryst. Growth 237–239, 993 (1994).Google Scholar
  3. 3.
    K. Masu, Y. Nakamura, T. Yamazaki, T. Shibata, M. Takahashi, and K. Tsubouchi, Jpn. J. Appl. Phys. 34 (6B), 760 (1995).ADSCrossRefGoogle Scholar
  4. 4.
    K. Uchida, A. Watanabe, F. Yano, M. Kouguchi, T. Tanaka, and S. Minagawa, J. Appl. Phys. 79, 3487 (1996).ADSCrossRefGoogle Scholar
  5. 5.
    Ch. Heinlein, J. Grepstad, T. Berge, and H. Riechert, Appl. Phys. Lett. 71, 341 (1997).ADSCrossRefGoogle Scholar
  6. 6.
    A. Georgakilas, S. Mikroulis, V. Cimalla, M. Zervos, A. Kostopoulos, Ph. Komninou, Th. Kehagias, and Th. Karakostas, Phys. Status Solidi A 188, 567 (2001).ADSCrossRefGoogle Scholar
  7. 7.
    F. Dwikusuma and T. F. Kuech, J. Appl. Phys. 94, 5656 (2003).ADSCrossRefGoogle Scholar
  8. 8.
    B. Agnarsson, M. Göthelid, S. Olafsson, H. P. Gislason, and U. O. Karlsson, J. Appl. Phys. 101, 013519 (2007).ADSCrossRefGoogle Scholar
  9. 9.
    N. Grandjean, J. Massies, and M. Leroux, J. Appl. Phys. 69, 2071 (1996).Google Scholar
  10. 10.
    M. Yeadon, M. T. Marshall, F. Hamdani, S. Pekin, H. Morkoc, and J. Murray Gibson, J. Appl. Phys. 83, 2847 (1998).ADSCrossRefGoogle Scholar
  11. 11.
    T. Malin, V. Mansurov, Y. Galitsyn, and K. Zhuravlev, Phys. Status Solidi C 11, 613 (2014).ADSCrossRefGoogle Scholar
  12. 12.
    T. Malin, V. Mansurov, Y. Galitsyn, and K. Zhuravlev, Phys. Status Solidi C 12, 443 (2015).ADSCrossRefGoogle Scholar
  13. 13.
    Y. Wu, A. Hanlon, J. F. Kaeding, R. Sharma, P. T. Fini, S. Nakamura, and J. S. Speck, Appl. Phys. Lett. 84, 912 (2004).ADSCrossRefGoogle Scholar
  14. 14.
    W.-G. Hu, Ch.-M. Jiao, H.-Y. Wei, P.-F. Zhang, T. T. Kang, R.-Q. Zhang, and X.-L. Liu, Chin. Phys. Lett. 25, 4364 (2008).ADSCrossRefGoogle Scholar
  15. 15.
    K. S. Kim, K. Y. Lim, and H. J. Lee, Semicond. Sci. Technol. 14, 557 (1999).ADSCrossRefGoogle Scholar
  16. 16.
    L.-C. Le, D.-G. Zhao, L.-L. Wu, Y. Deng, D.-S. Jiang, J.-J. Zhu, Z.-S. Liu, H. Wang, S.-M. Zhang, B.-S. Zhang, and H. Yang, Chin. Phys. B 20, 127306 (2011).ADSCrossRefGoogle Scholar
  17. 17.
    W. Kim, M. Yeadon, A. E. Botchkarev, S. N. Mohammad, J. M. Gibson, and H. Morkoc, J. Vac. Sci. Technol. B 15, 921 (1997).CrossRefGoogle Scholar
  18. 18.
    C. L. Freeman, F. Claeyssens, and N. L. Allan, Phys. Rev. Lett. 96, 066102 (2006).ADSCrossRefGoogle Scholar
  19. 19.
    C. J. F. Solano, A. Costales, E. Francisco, A. M. Pendas, M. A. Blanco, K.-C. Lau, H. He, and R. Pandey, J. Phys. Chem. C 112, 6667 (2008).Google Scholar
  20. 20.
    A. Yoshikawa and K. Takahashi, Phys. Status Solidi A 188, 625 (2001).ADSCrossRefGoogle Scholar
  21. 21.
    F. Liu, R. Collazo, S. Mita, Z. Sitar, G. Duscher, and S. J. Pennycook, J. Appl. Phys. Lett. 91, 203115 (2007).ADSCrossRefGoogle Scholar
  22. 22.
    J. Ohta, H. Fujioka, M. Oshima, K. Fujiwara, and A. Ishii, Appl. Phys. Lett. 83, 3075 (2003).ADSCrossRefGoogle Scholar
  23. 23.
    S. K. Davidsson, J. F. Falth, X. Y. Liu, H. Zirath, and T. G. Andersson, J. Appl. Phys. 98, 016109 (2005).ADSCrossRefGoogle Scholar
  24. 24.
    K. Xu, N. Yano, A. W. Jia, A. Yoshikawa, and K. Takahashi, J. Cryst. Growth 237–239, 1003 (2002).CrossRefGoogle Scholar
  25. 25.
    Y. S. Park, H. S. Lee, J. H. Na, H. J. Kim, S. M. Si, H. M. Kim, and J. E. Oh, J. Appl. Phys. 94, 800 (2003).ADSCrossRefGoogle Scholar
  26. 26.
    D. H. Lim, K. Xu, S. Arima, A. Yoshikawa, and K. Takahashi, J. Appl. Phys. 91, 6461 (2002).ADSCrossRefGoogle Scholar
  27. 27.
    Y. Wang, A. S. Ozcan, G. Ozaydin, K. F. Ludwig, Jr., A. Bhattacharyya, Th. D. Moustakas, H. Zhou, R. L. Headrick, and D. P. Siddons, Phys. Rev. B 74, 235304 (2006).ADSCrossRefGoogle Scholar
  28. 28.
    J. V. Lauritsen, M. C. R. Jensen, K. Venkataramani, B. Hinnemann, S. Helveg, B. S. Clausen, and F. Besenbacher, Phys. Rev. Lett. 103, 076103 (2009).ADSCrossRefGoogle Scholar
  29. 29.
    A. R. Smith, R. M. Feenstra, D. W. Greve, J. Neugebauer, and J. E. Nortrhrup, Phys. Rev. Lett. 79, 3934 (1997).ADSCrossRefGoogle Scholar
  30. 30.
    A. R. Smith, R. M. Feenstra, D. W. Greve, M.-S. Shin, M. Skowronski, J. Neugebauer, and J. E. Nortrhrup, Surf. Sci. 423, 70 (1999).ADSCrossRefGoogle Scholar
  31. 31.
    N. Kumagai, K. Akiyama, R. Togashi, H. Murakami, M. Takeuchi, T. Kinoshita, K. Takada, Y. Aoyagi, and A. Koukitu, J. Cryst. Growth 305, 366 (2007).ADSCrossRefGoogle Scholar
  32. 32.
    O. Ambacher, J. Phys. D 31, 2653 (1998).ADSCrossRefGoogle Scholar
  33. 33.
    C. G. Dunn and E. F. Koch, Acta Metall. 5, 548 (1957).CrossRefGoogle Scholar
  34. 34.
    L. Filippidis, H. Siegle, A. Hoffmann, C. Thomsen, K. Karch, and F. Bechstedt, Phys. Status Solidi B 198, 621 (1996).ADSCrossRefGoogle Scholar
  35. 35.
    G. G. Stoney, Proc. R. Soc. London 82 (553), 172 (1909).ADSCrossRefGoogle Scholar
  36. 36.
    T. Prokofyeva, M. Seon, J. Vanbuskirk, and M. Holtz, Phys. Rev. B 63, 125313 (2001).ADSCrossRefGoogle Scholar
  37. 37.
    R. W. Hoffman, Thin Solid Films 34, 185 (1976).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • T. V. Malin
    • 1
  • D. S. Milakhin
    • 1
  • V. G. Mansurov
    • 1
  • Yu. G. Galitsyn
    • 1
  • A. S. Kozhuhov
    • 1
  • V. V. Ratnikov
    • 2
  • A. N. Smirnov
    • 2
  • V. Yu. Davydov
    • 2
  • K. S. Zhuravlev
    • 1
    • 3
  1. 1.Rzhanov Institute of Semiconductor PhysicsRussian Academy of Sciences, Siberian BranchNovosibirskRussia
  2. 2.Ioffe InstituteSt. PetersburgRussia
  3. 3.Novosibirsk State UniversityNovosibirskRussia

Personalised recommendations