Advertisement

Semiconductors

, Volume 52, Issue 6, pp 776–782 | Cite as

Tunneling Current in Oppositely Connected Schottky Diodes Formed by Contacts between Degenerate n-GaN and a Metal

  • I. O. Maiboroda
  • J. V. Grishchenko
  • I. S. Ezubchenko
  • I. S. Sokolov
  • I. A. Chernych
  • A. A. Andreev
  • M. L. Zanaveskin
Physics of Semiconductor Devices

Abstract

The nonlinear behavior of the IV characteristics of symmetric contacts between a metal and degenerate n-GaN, which form oppositely connected Schottky diodes, is investigated at free-carrier densities from 1.5 × 1019 to 2.0 × 1020 cm–3 in GaN. It is demonstrated that, at an electron density of 2.0 × 1020 cm–3, the conductivity between metal (chromium) and GaN is implemented via electron tunneling and the resistivity of the Cr–GaN contact is 0.05 Ω mm. A method for determining the parameters of potential barriers from the IV characteristics of symmetric opposite contacts is developed. The effect of pronounced nonuniformity of the current density and voltage distributions over the contact area at low contact resistivity is taken into account. The potential-barrier height for Cr–n+-GaN contacts is found to be 0.47 ± 0.04 eV.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Yu. Fedorov, Elektron. NTB, No. 2 (2011).Google Scholar
  2. 2.
    Y. Yue, Z. Hu, J. Guo, et al., IEEE Electron Dev. Lett. 33, 988 (2012).ADSCrossRefGoogle Scholar
  3. 3.
    I. O. Maiboroda, A. A. Andreev, P. A. Perminov, Yu. V. Fedorov, and M. L. Zanaveskin, Tech. Phys. Lett. 40, 488 (2014).ADSCrossRefGoogle Scholar
  4. 4.
    F. A. Faria, J. Guo, P. Zhao, G. Lu, P. K. Kandaswamy, M. Wistey, H. Xing, and D. Jena, Appl. Phys. Lett. 101, 032109 (2012).ADSCrossRefGoogle Scholar
  5. 5.
    G. Greco, F. Iucolano, and F. Roccaforte, Appl. Surf. Sci. 383, 324 (2016).ADSCrossRefGoogle Scholar
  6. 6.
    V. F. Agekyan, E. V. Borisov, L. E. Vorobjev, G. A. Melentyev, H. Nykanen, L. Riuttanen, A. Yu. Serov, S. Suihkonen, O. Svensk, N. G. Filisofov, V. A. Shalygin, and L. A. Shelukhin, Phys. Solid State 57, 787 (2015).ADSCrossRefGoogle Scholar
  7. 7.
    D. K. Schroder, Semiconductor Material and Device Characterization, 3rd ed. (Wiley, Chichester, 2006), p.138.Google Scholar
  8. 8.
    F. Iucolano, F. Roccaforte, A. Alberti, C. Bongiorno, S. DiFranko, and V. Raineri, J. Appl. Phys. 100, 123706 (2006).ADSCrossRefGoogle Scholar
  9. 9.
    M. L. Lee, J. K. Sheu, and S. W. Lin, Appl. Phys. Lett. 88, 032103 (2006).ADSCrossRefGoogle Scholar
  10. 10.
    Peng Zhang, Y. Y. Lau, and R. M. Gilgenbach, J. Phys. D: Appl. Phys. 48, 475501 (2015).CrossRefGoogle Scholar
  11. 11.
    J. Simmons, J. Appl. Phys. 34, 238 (1963).ADSCrossRefGoogle Scholar
  12. 12.
    H. G. Unger, Theorie der Leitungen (Friedr. Vieweg and Sohn, Braunschweig, 1967) [in German].Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • I. O. Maiboroda
    • 1
  • J. V. Grishchenko
    • 1
  • I. S. Ezubchenko
    • 1
  • I. S. Sokolov
    • 1
  • I. A. Chernych
    • 1
  • A. A. Andreev
    • 1
  • M. L. Zanaveskin
    • 1
  1. 1.National Research Center “Kurchatov Institute”MoscowRussia

Personalised recommendations