, Volume 52, Issue 6, pp 771–775 | Cite as

High-Sensitivity Photodetector Based on Atomically Thin MoS2

  • S. D. Lavrov
  • A. P. Shestakova
  • E. D. Mishina
  • Yu. R. Efimenkov
  • A. S. Sigov
Physics of Semiconductor Devices


A design for a high-sensitivity photodetector with a single layer of MoS2 transition-metal dichalcogenide used as the basic functional element is proposed and the process of its fabrication is presented step by step. Quality evaluation and the selection of functional MoS2 flakes is based on the results of combined optical characterization. The main operating characteristics of the fabricated device are investigated and a photosensitivity of 1.4 mA/W is demonstrated. A difference of this device in comparison with existing analogues is its high photosensitivity at low operating voltages (in the range of ±3 V).


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    K. S. Novoselov, Science (Washington, DC, U. S.) 306, 666 (2004).ADSCrossRefGoogle Scholar
  2. 2.
    A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C.-Y. Chim, G. Galli, and F. Wang, Nano Lett. 10, 1271 (2010).ADSCrossRefGoogle Scholar
  3. 3.
    K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, Phys. Rev. Lett. 105, 2 (2010).CrossRefGoogle Scholar
  4. 4.
    H. Schmidt, F. Giustiniano, and G. Eda, Chem. Soc. Rev. 44, 7715 (2015).CrossRefGoogle Scholar
  5. 5.
    X. Duan, C. Wang, A. Pan, R. Yu, and X. Duan, Chem. Soc. Rev. 44, 8859 (2015).CrossRefGoogle Scholar
  6. 6.
    G. R. Bhimanapati, Z. Lin, V. Meunier, Y. Jung, J. Cha, S. Das, D. Xiao, Y. Son, M. S. Strano, V. R. Cooper, L. Liang, S. G. Louie, E. Ringe, W. Zhou, S. S. Kim, R. R. Naik, B. G. Sumpter, H. Terrones, F. Xia, Y. Wang, J. Zhu, D. Akinwande, N. Alem, J. A. Schuller, R. E. Schak, M. Terrones, and J. A. Robinson, ACS Nano 9, 11509 (2015).CrossRefGoogle Scholar
  7. 7.
    R. Lv, H. Terrones, A. L. Elías, N. Perea-López, H. R. Gutiérrez, E. Cruz-Silva, L. P. Rajukumar, M. S. Dresselhaus, and M. Terrones, Nano Today 10, 559 (2015).CrossRefGoogle Scholar
  8. 8.
    K. F. Mak and J. Shan, Nat. Photon. 10, 216 (2016).ADSCrossRefGoogle Scholar
  9. 9.
    W. Zhao, R. M. Ribeiro, and G. Eda, Acc. Chem. Res. 48, 91 (2015).CrossRefGoogle Scholar
  10. 10.
    N. Perea-López, A. L. Elías, A. Berkdemir, A. Castro-Beltran, H. R. Cutiérrez, S. Feng, R. Lv, T. Hayashi, F. López-Urías, S. Ghosh, B. Muchharla, S. Talapatra, H. Terrones, and M. Terrones, Adv. Funct. Mater. 23, 5511 (2013).CrossRefGoogle Scholar
  11. 11.
    Z. Yin, H. Li, H. Li, L. Jiang, Y. Shi, Y. Sun, G. Lu, Q. Zhang, X. Chen, and H. Zhang, ACS Nano 6, 74 (2012).CrossRefGoogle Scholar
  12. 12.
    A. Polman and H. Atwater, Nat. Mater. 11, 174 (2012).ADSCrossRefGoogle Scholar
  13. 13.
    A. V. Kudryavtsev, S. D. Lavrov, A. P. Shestakova, L. L. Kulyuk, and E. D. Mishina, AIP Adv. 6, 95306 (2016).CrossRefGoogle Scholar
  14. 14.
    S. D. Lavrov, A. V. Kudryavtsev, A. P. Shestakova, L. Kulyu, and E. D. Mishina, Opt. Spectrosc. 120, 808 (2016).ADSCrossRefGoogle Scholar
  15. 15.
    E. Mishina, N. Sherstyuk, S. Lavrov, A. Sigov, A. Mitioglu, S. Anghel, and L. Kulyuk, Appl. Phys. Lett. 106, 131901 (2015).ADSCrossRefGoogle Scholar
  16. 16.
    E. D. Mishina, N. E. Sherstyuk, A. P. Shestakova, S. D. Lavrov, S. V. Semin, A. S. Sigov, A. Mitioglu, S. Anghel, and L. Kulyuk, Semiconductors 49, 791 (2015).ADSCrossRefGoogle Scholar
  17. 17.
    H. Zeng and X. Cui, Chem. Soc. Rev. 44, 2629 (2015).CrossRefGoogle Scholar
  18. 18.
    M. Chhowalla, H. S. Shin, G. Eda, L.-J. Li, K. P. Loh, and H. Zhang, Nat. Chem. 5, 263 (2013).CrossRefGoogle Scholar
  19. 19.
    F. Xia, T. Mueller, Y. Lin, A. Valdes-Garcia, and P. Avouris, Nat. Nanotechnol. 4, 839 (2009).ADSCrossRefGoogle Scholar
  20. 20.
    F. Xia, T. Mueller, R. Golizadeh-Mojarad, M. Freitage, Y. M. Lin, J. Tsang, V. Perebeionos, and P. Avouris, Nano Lett. 9, 1039 (2009).ADSCrossRefGoogle Scholar
  21. 21.
    N. Perea-Lípez, Z. Lin, N. R. Pradhan, A. Iñiguez-Rábago, A. Laura Elías, A. McCreary, J. Lou, P. M. Ajayan, H. Terones, L. Balicas, and M. Terrones, 2D Mater. 1, 11004 (2014).CrossRefGoogle Scholar
  22. 22.
    W. Choi, M. Y. Cho, A. Konar, J. H. Lee, G.-B. Cha, S. C. Hong, S. S. Kim, J. Kim, D. Jena, J. Joo, and S. S. Kim, Adv. Mater. 24, 5832 (2012).CrossRefGoogle Scholar
  23. 23.
    J. Kwon, Y. K. Hong, G. Han, G. Han, I. Omkaram, W. Choi, S. Kim, and Y. Yoon, Adv. Mater. 27, 2224 (2015).CrossRefGoogle Scholar
  24. 24.
    M. M. Furchi, D. K. Polyushkin, A. Pospischil, and T. Mueller, Nano Lett. 14, 6165 (2014).ADSCrossRefGoogle Scholar
  25. 25.
    W. Zhang, J.-K. Huang, C.-H. Chen, Y.-H. Chang, Y.-J. Cheng, and L.-J. Li, Adv. Mater. 25, 3456 (2013).CrossRefGoogle Scholar
  26. 26.
    O. Lopez-Sanchez, D. Lembke, M. Kayci, A. Radenovic, and A. Kis, Nat. Nanotechnol. 8, 497 (2013).ADSCrossRefGoogle Scholar
  27. 27.
    L. Britnell, R. M. Ribeiro, A. Eckmann, R. Jalil, B. D. Belle, A. Mishchenko, Y.-J. Kim, R. V. Gorbachev, T. Georgiou, S. V. Morozov, A. N. Grigorenko, A. K. Geim, C. Casiraghi, A. H. Castro Neto, and K. S. Novoselov, Science (Washington, DC, U. S.) 340, 1311 (2013).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • S. D. Lavrov
    • 1
  • A. P. Shestakova
    • 1
  • E. D. Mishina
    • 1
  • Yu. R. Efimenkov
    • 2
  • A. S. Sigov
    • 1
  1. 1.Moscow Technological University (MIREA)MoscowRussia
  2. 2.NPP PulsarMoscowRussia

Personalised recommendations