Skip to main content
Log in

On the Possibility of the Propagation of Solitary Electromagnetic Waves in Bigraphene

  • Carbon Systems
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

The possibility of the propagation of a solitary electromagnetic wave in bigraphene, between the layers of which a potential difference is applied, is studied. The condition is found under which the formation of such a wave is possible. The dependence of the solitary-wave shape on the potential difference between graphene layers is studied. As possible solitary-wave identification, the electric charge carried away by the wave in the direction of its propagation is calculated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Zhang, Y.-W. Tan, H. L. Stormer, and P. Kim, Nature (London, U.K.) 438, 201 (2005).

    Article  ADS  Google Scholar 

  2. M. I. Katsnelson, K. S. Novoselov, and A. K. Geim, Nat. Phys. 2, 620 (2006).

    Article  Google Scholar 

  3. A. Ghazaryan, T. Chakraborty, and P. Pietilüainen, J. Phys.: Condens. Matter 27, 185301 (2015).

    ADS  Google Scholar 

  4. E. McCann and V. I. Fal’ko, Phys. Rev. Lett. 96, 086805 (2006).

    Article  ADS  Google Scholar 

  5. W.-K. Lee, J. T. Robinson, D. Gunlycke, R. R. Stine, C. R. Tamanaha, W. P. King, and P. E. Sheehan, Nano Lett. 11, 5461 (2011).

    Article  ADS  Google Scholar 

  6. F. Bonaccorso, A. Lombardo, T. Hasan, Z. Sun, L. Colombo, and A. C. Ferrari, Mater. Today 15, 564 (2012).

    Article  Google Scholar 

  7. E. J. Nicol and J. P. Carbotte, Phys. Rev. B 77, 155409 (2008).

    Article  ADS  Google Scholar 

  8. R. R. Hartmann, J. Kono, and M. E. Portnoi, Nanotechnology 25, 322001 (2014).

    Article  Google Scholar 

  9. S. Sekwao and J. P. Leburton, Appl. Phys. Lett. 106, 063109 (2015).

    Article  ADS  Google Scholar 

  10. I. Al-Naib, J. E. Sipe, and M. M. Dignam, Phys. Rev. B 90, 245423 (2014).

    Article  ADS  Google Scholar 

  11. R. McGouran, I. Al-Naib, and M. M. Dignam, Phys. Rev. B 94, 235402 (2016).

    Article  ADS  Google Scholar 

  12. D. Popa, Z. Sun, F. Torrisi, T. Hasan, F. Wang, and A. C. Ferrari, Appl. Phys. Lett. 97, 203106 (2010).

    Article  ADS  Google Scholar 

  13. D. A. Svintsov, V. V. Vyurkov, V. F. Lukichev, A. A. Orlikovsky, A. Burenkov, and R. Oechsner, Semiconductors 47, 279 (2013).

    Article  ADS  Google Scholar 

  14. V. M. Apalkov and T. Chakraborty, Phys. Rev. Lett. 105, 036801 (2010).

    Article  ADS  Google Scholar 

  15. Y. E. Lozovik and A. A. Sokolik, Phys. Lett. A 374, 2785 (2010).

    Article  ADS  Google Scholar 

  16. A. Bostwick, F. Speck, T. Seyller, K. Horn, M. Polini, R. Asgari, A. H. MacDonald, and E. Rotenberg, Science 328, 999 (2010).

    Article  ADS  Google Scholar 

  17. S. V. Kryuchkov and E. V. Kaplya, Tech. Phys. 48, 576 (2003).

    Article  Google Scholar 

  18. Z. Sun, T. Hasan, and A. C. Ferrari, Physica E 44, 1082 (2012).

    Article  ADS  Google Scholar 

  19. S. V. Kryuchkov and E. I. Kukhar’, Physica B 408, 188 (2013).

    Article  ADS  Google Scholar 

  20. P. V. Ratnikov, JETP Lett. 90, 469 (2009).

    Article  ADS  Google Scholar 

  21. E. McCann, Phys. Rev. B 74, 161403 (2006).

    Article  ADS  Google Scholar 

  22. E. V. Castro, K. Novoselov, S. Morozov, N. Peres, J. L. Dos Santos, J. Nilsson, F. Guinea, A. Geim, and A. C. Neto, Phys. Rev. Lett. 99, 216802 (2007).

    Article  ADS  Google Scholar 

  23. A. C. Neto, F. Guinea, N. M. Peres, K. S. Novoselov, and A. K. Geim, Rev. Mod. Phys. 81, 109 (2009).

    Article  ADS  Google Scholar 

  24. E. McCann and M. Koshino, Rep. Prog. Phys. 76, 056503 (2013).

    Article  ADS  Google Scholar 

  25. A. B. Kuzmenko, E. van Heumen, D. van der Marel, P. Lerch, P. Blake, K. S. Novoselov, and A. K. Geim, Phys. Rev. B 79, 115441 (2009).

    Article  ADS  Google Scholar 

  26. K. Majumdar, K. V. R. M. Murali, N. Bhat, and Y.-M. Lin, Appl. Phys. Lett. 96, 123504 (2010).

    Article  ADS  Google Scholar 

  27. R. McGouran and M. M. Dignam, arXiv:1701.00028 [cond-mat] (2016).

  28. F. C. Moon, Chaotic Vibrations (Wiley Interscience, New York, 1987).

    MATH  Google Scholar 

  29. L. A. Falkovsky, Phys. Usp. 51, 887 (2008).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. I. Kukhar.

Additional information

Original Russian Text © E.I. Kukhar, S.V. Kryuchkov, E.S. Ionkina, 2018, published in Fizika i Tekhnika Poluprovodnikov, 2018, Vol. 52, No. 6, pp. 620–624.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kukhar, E.I., Kryuchkov, S.V. & Ionkina, E.S. On the Possibility of the Propagation of Solitary Electromagnetic Waves in Bigraphene. Semiconductors 52, 766–770 (2018). https://doi.org/10.1134/S1063782618060106

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063782618060106

Navigation